

Marketing and Price Volatility of Turmeric in electronic National Agriculture Market (e-NAM) of Tamil Nadu

A. Salaijayamani* and Dr. A. Xavier Susairaj**

Abstract

Turmeric is also known as "Indian saffron" and "Golden Spice" in India. Turmeric is considered as spice, medicine and herb. Turmeric is also used in Indian culture and traditions. The present study used secondary data as a major source for data. Sources such as Agricultural Statistics at a Glance, Government of India, Ministry of Agriculture and Farmers Welfare, Spice Board of India, Spice statistics at a glance. By using the daily price data of the Turmeric price volatility have been measured using ARCH and GARCH model. The study concludes that there is a direct relation between production of turmeric and price of turmeric in the market. The volatility results shows that price volatility is very high during the harvest period. This shows that there is high demand for turmeric only during the harvest period. The study suggests that government should initiate some awareness programmes for the farmers about the demand and supply of the market arrivals and government also should provide market information to the farmers trading in the market.

Keywords: Turmeric, Production, Price, Volatility

*Research Scholar, PG and Research Department of Economics, Sacred Heart College (Autonomous), Tirupattur

** Associate Professor and Head, PG and Research Department of Economics, Sacred Heart College (Autonomous), Tirupattur

Introduction:

The word Turmeric is derived from Latin word called terra merita, which refers to the colour of the ground turmeric, which resembles a mineral pigment (Willamson 2002). Major turmeric producers of turmeric are India, Pakistan, China, Malaysia, Vietnam, Philippines, Japan, Myanmar, Sri Lanka, Korea and Thailand (JRG 2011). Turmeric has been used for both cooking purpose and medicine for more than 6000 years. Turmeric belongs to the native of South and Southeast Asian countries and turmeric is also used as traditional dishes in India, China, Pakistan, Bangladesh, Taiwan, Malaysia, Nepal, Haiti. Jamaica and Indonesia (Krishnaswamy, 2006). Turmeric is also known as "Indian saffron" and "Golden Spice" in India. Turmeric is considered as spice, medicine and herb. Turmeric is also used in Indian culture and traditions. Spices are one of the major agriculture products that produced in India and account for exports to various countries (Seasonal Commodity Insights, 2015). India is one of the largest irrigated lands in the world, but its per-hectare water availability and percapita ranks among the least. The Coeffective use of both water and fertilizer are the key factor for increasing the production and productivity of the agricultural product in our country (Sandeep 2021). India produces 78 percent of world turmeric and consumes 90 percent (Yogesh & India's Mokshapati, 2014). different climatic condition ensures accessibility of all varieties of spices. Major spices produced in India are pepper, turmeric, ginger, chillies, garlic, coriander, cumin, fennel, fenugreek, ajwan, cardamom, cinemon, nutmeg, clove, tamarind and

saffron (Gawde 2019). There are 107 different variety of spices with 20 different countries which involved in production and Export of spices. Turmeric is grown as a the kharif crop in India due to high Curcumin content. Hence India is one of the leading exporters of turmeric to other countries, in 2019 India has exported 17000 tonnes worth of 57,371 lakh Indian rupees (Spice Statistics at a glance, 2021). Turmeric is cultivated on 218.7 '000 Ha with a production of 1166.8 '000 MT in Andhra Pradesh, Tamil Nadu, Odisha, Kerala, Maharashtra, West Bengal and northeastern states of India (Anonymous 2013). Methodology:

The present study used secondary data as a major source for data. Sources such as Agricultural **Statistics** at a Glance, Government of India, Ministry of Agriculture and Farmers Welfare, Spice Board of India, Spice statistics at a glance. By using the daily price data of the Turmeric price volatility have been measured using ARCH and GARCH model.

Result and Discussion:

Table 1: Area, Production and Productivity of Turmeric in Tamil Nadu

		Area	Production	
		(in '000)	in ('000)	Productivity
Year	State	На	MT	Rate in %
	Tamil Nadu	76.98	461.99	
2013	% Distribution of Tamil Nadu	33.08	38.82	6
	India	232.67	1189.89	5.11
	Tamil Nadu	31.97	117.42	
2014	% Distribution of Tamil Nadu	17.33	14.14	3.76
	India	184.44	830.39	4.5
	Tamil Nadu	34.73	132.4	
2015	% Distribution of Tamil Nadu	18.68	14.03	3.81
	India	185.9	943.3	5.07
	Tamil Nadu	29.31	112.59	
2016	% Distribution of Tamil Nadu	13.21	10.66	3.84
	India	221.78	1056.1	4.76
	Tamil Nadu	30	116	
2017	% Distribution of Tamil Nadu	12.60	10.24	3.87
	India	237.96	1132.72	4.76
2018	Tamil Nadu	23.35	92.36	
	% Distribution of Tamil Nadu	8.91	9.64	3.9
	India	261.92	957.13	3.6
2019	Tamil Nadu	18.43	96.25	
	% Distribution of Tamil Nadu	6.22	8.16	5.2
	India	296.18	1178.75	3.9
2020	Tamil Nadu	20.89	86.51	
	% Distribution of Tamil Nadu	7.13	7.69	4.14
	India	292.88	1123.86	3.84
2021	Tamil Nadu	24.22	104.4	
	% Distribution of Tamil Nadu	6.93	7.82	4.31
	India	349.43	1334.31	3.82

Source: Compiled from various Agricultural Statistics at a Glance Reports

Table 1 shows the area, production and productivity of turmeric and percentage distribution of turmeric in Tamil Nadu. Highest percentage of distribution of area was in 2013 with 33.08 percent followed by 2015 with 18.68 percent and 2014 with 17.33 and the lowest area of distribution was in the year 2019 with 6.22 percent. In the year 2013 highest production percentage distribution was recorded with 38.82 percent followed by 2014 with 14.14 percent and 2015 with 14.03 percent and lowest was in the year 2020 with 7.69 percent. Productivity rate was high in the 2013 with 6 percent followed by 2019 with

5.2 and 2021 with 4.31 percent and the lowest was in the year 2014 with 3.76. The data reveals that area, production and

productivity of turmeric in Tamil Nadu was in a negative trend.

District	2012	2013	2014	2015	2016	2017	2018
Ariyalur	51	57580	30283	19849	17746	90	65
Coimbatore	2815	159	64	48	40	2546	2479
Cuddalore	502	3956	1564	1304	1108	1085	544
Dharmapuri	17181	4328	2247	1308	3525	37747	14891
Dindigul	12	44	8	0	0	37	20
Erode	33240	49593	12331	11786	9668	46397	15030
Kancheepuram	12	548	292	224	157	0	0
Kanniyakumari	0	5	0	15	0	0	0
Karur	562	77	30	29	60	20	367
Krishnagiri	1551	9495	5279	3899	2775	2201	1162
Madurai	18	121	61	11	0	37	32
Nagapattinam	1	55	45	55	68	0	0
Namakkal	7677	0	4	0	0	10932	10893
Perambalur	1960	5	133	4	0	2278	3424
Pudukottai	51	22	11	11	16	34	97
Ramanathapuram	0	11	8	15	24	0	0
Salem	11553	11	0	0	0	10612	7482
Sivaganga	19	9207	6806	3190	1720	19	32
Thanjavur	28	192	76	48	24	25	69
The Nilgiris	45	10274	6481	5040	4590	47	69
Theni	3	6826	8136	2559	1697	18	4
Thoothukudi	18	9992	4709	4713	2154	12	20
Tiruchirapalli	558	11057	4603	2703	2848	855	3034
Tirunelveli	13	49	23	18	20	23	28
Tiruppur	1146	0	11	0	16	1453	1167
Tiruvallur	28	27931	8271	6472	6066	29	28
Tiruvannamalai	1958	65108	46727	40641	35035	2828	2274
Tiruvarur	12	384	80	66	608	14	8
Vellore	3419	641	186	59	48	3126	1927
Villupuram	7926	80426	30969	10645	13066	7090	7984
Virudhunagar	2	20316	5337	2704	1923	8	4
State	92361	368413	174775	117416	105002	129563	73134

Table-2, District-wise Production of Turmeric (in Tonnes) in Tamil Nadu

Source: Compiled from Statistical Handbook of Tamil Nadu, Government of Tamil Nadu Table 2 shows the district wise production of Turmeric in Tamil Nadu. In the year 2012 Erode has the highest production of 33240 tonnes of turmeric followed by Dharmapuri with 17181 tonnes and Salem with 11553 tonnes and the lowest turmeric producing district in Tamil Nadu is Nagapattinam with 1 Tonne. In overall production of Turmeric was in 2013 had the

highest production rate with 368413 tonnes followed by 174775 tonnes in 2014 and 129563 tonnes in 2017. The lowest production of turmeric was recorded in the year 2018 with 73134 tonnes.

District	2012	2013	2014	2015	2016	2017	2018
Ariyalur	4210	3510	3190	3430	3620	4045	3955
Coimbatore	5480	3760	3690	4000	1993	4721	6842
Cuddalore	5480	3790	3670	4030	2352	2256	2252
Dharmapuri	5480	8740	4900	1211	4774	2811	2989
Dindigul	5500	4000	0	0	3620	4045	3955
Erode	8660	4920	5740	4380	4898	4892	5898
Kancheepuram	5480	3790	3670	4030	3620	0	3955
Kanniyakumari	5000	0	3750	0	0	0	0
Karur	5500	3750	3630	4000	88	2624	3955
Krishnagiri	4460	3680	3280	3150	3307	2363	2179
Madurai	5500	3590	3670	0	3620	4045	3955
Nagapattinam	5500	3750	3670	6800	0	0	3955
Namakkal	0	4000	0	0	3253	5985	3595
Perambalur	5000	3800	4000	0	2814	6071	3541
Pudukottai	5500	3670	3670	4000	3620	4045	3955
Ramanathapuram	5500	4000	3750	6000	0	0	0
Salem	5500	0	0	0	1612	2816	2750
Sivaganga	3950	4410	3240	3740	3620	4045	3955
Thanjavur	5490	3800	3690	4000	3620	4045	3955
The Nilgiris	2630	2170	2240	2150	3620	4045	3955
Theni	5480	8510	4010	4450	3620	4045	3955
Thoothukudi	5480	4140	6380	4730	3620	4045	3955
Tiruchirapalli	5480	3500	2870	3740	1340	9755	1896
Tirunelveli	5440	3830	3600	4000	3620	4045	3955
Tiruppur	0	3670	0	4000	1769	4650	3955
Tiruvallur	11380	6050	5380	6920	3620	4045	3955
Tiruvannamalai	5060	4280	4970	5570	6870	6571	5217
Tiruvarur	5490	3810	3670	4030	3620	4045	3955
Vellore	5480	3800	3690	4000	5646	5139	6926
Villupuram	5740	2900	1850	2560	2840	4269	3852
Virudhunagar	6500	3120	2670	3710	3620	4045	3955
State	161350	120740	102540	174730	94236	117508	115172

Table-3, District-wise Productivity (Tonnes/Ha) of Turmeric in Tamil Nadu

Source: Compiled from Statistical Handbook of Tamil Nadu, Government of Tamil Nadu Table 3 shows the district wise productivity of turmeric in Tamil Nadu. In 2013 Tiruvallur has the highest productivity rate of 11380 tonnes/Ha followed by Erode with

8660 tonnes/Ha and Virudhunagar with 6500 tonnes/Ha and the least productivity of turmeric was recorded in Nilgiris with 2630 tonnes/Ha. In the year 2018 Vellore has the highest productivity rate with 6926 tonnes/Ha followed by Coimbatore with 6842 tonnes/Ha and Erode with 5898 tonnes/Ha and the lowest rate of

productivity was in Tiruchirappalli with 1896 tonnes/Ha. And the total productivity of Tamil Nadu was high in the year 2015 with 174730 tonnes/Ha followed by 2012 with 161350 tonnes/Ha and 2013 with 120740 tonnes/Ha and lowest productivity of turmeric was in 2016 with 94236 tonnes/Ha.

	Arrived lot			Traded	
	(No. of			Qty	Traded
	Farmers)	Arrived Qty (100 kg)	e trade	(100 kg)	value (Rs)
2017-18	1	1.5	1	1.43	4576
2018-19	252	2501.82	90	1501.49	9914958
2019-20	1075	8109.67	771	6518.9	41080393.45
2020-21	48	145.55	9	17.66	73527.4
2021-22	88	298.55	58	174.93	1526350.6

Table 4: Turmeric Traded in eNAM

Table 4 shows the turmeric traded in eNAM in Tamil Nadu. The traded value of turmeric in eNAM was higher in the year 2019-20 with 41080393.45 followed by 2018-19 with 9914958 and 2021-22 with 1526350.6 and the least amount of turmeric was traded in the year 2017-18 with 4576. This shows that farmers are willing to trade in eNAM because of various reasons like transparency in transaction, No intermediaries, high price for their produce etc.

Price Volatility of Turmeric Bulb

Non-Stationary Prices

C

Unit Root Test for Prices: Result shows non-stationary

Null Hypothesis: PRICE has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=23)

		t- Statistic Prob.*
Augmented statistic	l Dickey-Fuller	test- 2.550062 0.1039
Test critical		-
values:	1% level	3.434502
		-
	5% level	2.863261
		-
	10% level	2.567735

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PRICE) Method: Least Squares Date: 12/22/22 Time: 13:35 Sample (adjusted): 1/08/2015 7/29/2022 Included observations: 1500 after adjustments

Variable	Coefficien	Std. tError	t- Statistic	Prob.
			_	
PRICE(-1)	-0.016507	0.006473	2.550062	20.0109
D(PRICE(-			-	
1))	-0.479312	0.025890	18.51360	00.000
D(PRICE(-			-	
2))	-0.305116	0.026948	11.32252	20.0000
D(PRICE(-			-	
3))	-0.139782	0.024901	5.613445	50.0000
С	106.2325	42.71983	2.486727	70.0130
		Mean		-
R-squared	0.207124	depender	nt var	0.956667
Adjusted R	-	S.D. 0	dependen	t
squared	0.205003	var		266.5411
S.E. o	f	Akaike	e info)
regression	237.6550	criterion		13.78284

Sum			
squared		Schwarz	
resid	84437446	criterion	13.80056
Log		Hannan-Quinn	
likelihood	-10332.13	criter.	13.78944
		Durbin-Watson	
F-statistic	97.63529	stat	2.013959
Prob(F-			
statistic)	0.000000		

Stationary Return Prices

Unit Root Test for Return Price Series: Result shows Stationary

Null Hypothesis: RETURN has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=23)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-33.07624	0.0000
Test critical values: 1% level	-3.434502	
5% level	-2.863261	
10% level	-2.567735	
*MacKinnon (1996) one-sided p-values.		
Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN)		

Dependent Variable: D(RETURN) Method: Least Squares Date: 12/22/22 Time: 13:36 Sample (adjusted): 1/08/2015 7/29/2022 Included observations: 1500 after adjustments

Variable	CoefficientStd Err	or t-Statistic	Prob
variable	Coefficientista. En	or t blatistic	1100.

RETURN(-1) D(RETURN(-1)) D(RETURN(-2)) C	-1.989897 0.464823 0.145669 -0.000228	0.060161 0.044622 0.024987 0.000946	-33.07624 10.41681 5.829845 -0.240774	0.0000 0.0000 0.0000 0.8098
				-
R-squared	0.723182	Mean de	ependent var	0.000138
Adjusted R-squared	10.722627	S.D. dep	endent var	0.069559 -
S.E. of regression	0.036634	Akaike i	nfo criterion	3.773005
Sum squared resid	2.007730	Schwarz	criterion	3.758836
		Hannan-	Quinn	-
Log likelihood	2833.754	criter.		3.767727
F-statistic	1302.759	Durbin-	Watson stat	2.017149
Prob(F-statistic)	0.000000			

ARCH Model: Null Hypothesis rejected

Heteroskedasticity Test: ARCH

F-statistic	84.00293	Prob. F(1,1499)	0.0000 () 0.0000 ()
Obs*R-squared	79.65140	Prob. Chi-Square(1	
Test Equation:	ale: RESID^2		

Method: Least Squares Date: 12/22/22 Time: 13:41 Sample (adjusted): 1/07/2015 7/29/2022 Included observations: 1501 after adjustments

Variable	Coefficien	tStd. Error	t-Statistic	Prob.
C RESID^2(-1)	0.001183 0.186978	9.23E-05 0.020401	12.81443 9.165312	0.0000 0.0000
R-squared Adjusted R-squared	0.053066 10.052434	Mean de S.D. dep	ependent var bendent var	0.001469 0.003455
S.E. of regression	0.003363	Akaike i	nfo criterion	- 18.550523 -
Sum squared resid	0.016955	Schwarz Hannan-	criterion Quinn	8.543442 -
Log likelihood	6419.167	criter.		8.547885
F-statistic Prob(F-statistic)	84.00293 0.000000	Durbin-'	Watson stat	1.992254

GARCH Model: Past Return have strong impact on current return

Dependent Variable: RETURN Method: ML ARCH - Normal distribution (Marquardt / EViews legacy) Date: 12/22/22 Time: 13:44Sample (adjusted): 1/06/2015 7/29/2022Included observations: 1502 after adjustments Convergence achieved after 17 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)

Variable	Coefficien	tStd. Error	z-Statistic	Prob.
C RETURN(-1)	-0.000539 -0.383974	0.000820 0.026369	-0.658071 -14.56141	0.5105 0.0000
	Variance I	Equation		
C RESID(-1)^2 GARCH(-1)	0.000322 0.193920 0.582428	4.19E-05 0.029668 0.050087	7.680291 6.536409 11.62828	0.0000 0.0000 0.0000
R-squared Adjusted R-square	0.154831	Mean de	pendent var	- 0.000182
	u0.134207	S.D. dep	endent var	0.042614
S.E. of regression	0.039189	S.D. dep Akaike i	endent var nfo criterion	0.042614 - 3.798356
S.E. of regression Sum squared resid	0.039189 2.303702	S.D. dep Akaike i Schwarz Hannan-	endent var nfo criterion criterion Quinn	0.042614 - 3.798356 - 3.780665

Return Volatility Graph

RETURNVOLATILITY

Finger Non- Stationary

Null Hypothesis: PRICE has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=23)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-2.803049	0.0580
Test critical values: 1% level	-3.434502	
5% level	-2.863261	
10% level	-2.567735	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PRICE) Method: Least Squares Date: 12/22/22 Time: 14:16 Sample (adjusted): 1/08/2015 7/29/2022 Included observations: 1500 after adjustments

Variable	Coefficien	tStd. Error	t-Statistic	Prob.
PRICE(-1)	-0.018697	0.006670	-2.803049	0.0051
D(PRICE(-1))	-0.444702	0.025949	-17.13772	0.0000
D(PRICE(-2))	-0.262826	0.027243	-9.647433	0.0000
D(PRICE(-3))	-0.111046	0.025302	-4.388773	0.0000
C	132.5436	48.31360	2.743401	0.0062
				-
R-squared	0.184296	Mean de	pendent var	1.220000
Adjusted R-squared	d0.182114	S.D. dep	endent var	275.3297
S.E. of regression	249.0001	Akaike i	nfo criterion	13.87611
Sum squared resid	92691557	Schwarz	criterion	13.89382
		Hannan-	Quinn	
Log likelihood	-10402.08	criter.		13.88271
F-statistic	84.44330	Durbin-	Watson stat	2.011946
Prob(F-statistic)	0.000000			

Null Hypothesis: RETURN has a unit root Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=23)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.0000
1% level	-3.434502	
5% level	-2.863261	
10% level	-2.567735	
	Fuller test statistic 1% level 5% level 10% level	t-Statistic Fuller test statistic -31.53535 1% level -3.434502 5% level -2.863261 10% level -2.567735

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN) Method: Least Squares Date: 12/22/22 Time: 14:17 Sample (adjusted): 1/08/2015 7/29/2022 Included observations: 1500 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN(-1) D(RETURN(-1)) D(RETURN(-2)) C	-1.875686 0.396822 0.120061 -0.000222	0.059479 0.044490 0.025343 0.000891	-31.53535 8.919325 4.737367 -0.248945	0.0000 0.0000 0.0000 0.8034
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.707484 0.706897 0.034525 1.783187 2922.706 1206.083 0.000000	Mean dep S.D. depe Akaike ir Schwarz Hannan-(Durbin-W	endent var endent var ofo criterion criterion Quinn criter. Jatson stat	-0.000134 0.063771 -3.891608 -3.877439 -3.886329 2.014773

ARCH

Heteroskedasticity Test: ARCH

F-statistic	111.8534	Prob. F(1,1499) 0.0000
Obs*R-squared	104.2255	Prob. Chi-Square(1) 0.0000

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 12/22/22 Time: 14:21

Sample (adjusted): 1/07/2015 7/29/2022

Included observation	ons: 1501 after adjustm	ents	
Variable	CoefficientStd Error	t-Statistic	Proh

variable	coefficien	ilbid. Ellor	t Statistic	1100.
C RESID^2(-1)	0.000953 0.251467	7.65E-05 0.023777	12.46565 10.57608	0.0000 0.0000
R-squared	0.069437	Mean de	ependent var	0.001281
Adjusted R-square	d0.068817	S.D. dep	endent var	0.002807
S.E. of regression	0.002708	Akaike i	info criterior	- 18.983631 -
Sum squared resid	0.010995	Schwarz	criterion	8.976551
		Hannan-	-Quinn	-
Log likelihood	6744.215	criter.		8.980993
F-statistic	111.8534	Durbin-	Watson stat	2.054929
Prob(F-statistic)	0.000000			

GARCH

Dependent Variable: RETURN Method: ML ARCH - Normal distribution (Marquardt / EViews legacy) Date: 12/22/22 Time: 14:22Sample (adjusted): 1/06/2015 7/29/2022Included observations: 1502 after adjustments Convergence achieved after 14 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)

Variable	Coefficien	tStd. Error	z-Statistic	Prob.
C RETURN(-1)	-0.000155 -0.344088	0.000839 0.025103	-0.185130 -13.70699	0.8531 0.0000
	Variance I	Equation		
C RESID(-1)^2 GARCH(-1)	0.000385 0.139073 0.556186	5.15E-05 0.023806 0.047917	7.468569 5.842030 11.60717	0.0000 0.0000 0.0000
R-squared Adjusted R-square	0.136506 d0.135930	Mean de S.D. dep	ependent var bendent var	- 0.000139 0.038890 -
S.E. of regression	0.036150	Akaike i	nfo criterior	3.871532

			-
Sum squared resid	1.960222	Schwarz criterion	3.853841
		Hannan-Quinn	-
Log likelihood	2912.521	criter.	3.864942
Durbin-Watson star	t 2.204042		

Return Volatility Graph

The study concludes that there is a direct relation between production of turmeric and price of turmeric in the market. The volatility results shows that price volatility is very high during the harvest period. This shows that there is high demand for turmeric only during the harvest period. The study suggests that government should initiate some awareness programmes for the farmers about the demand and supply of the market arrivals and government also should provide market information to the farmers trading in the market.

References:

- Agricultural Statistics at a glance 2018. Government of India.
- Anonymous (2013), Area and production of turmeric in India.
- Das, D. S., & Tamilarasi, R. (2021). An Economic Analysis on Turmeric Cultivation in Coimbatore District of Tamil Nadu.

- Gawde, G. K., Bhagat, U., Lakra, N., & JHA, M. (2019). An economic analysis of production and marketing of major spices in Kanker district of Chhattisgarh on chilli and turmeric. *Journal of Pharmacognosy and Phytochemistry*, 8(6), 1447-1450.
- JRG. 2011. Turmeric Seasonal Report. JRG House, Ashoka Road, Kaloor, Kochi, Kerala – 682017. PP-2 Olojede, A.O., P. Iluebbey and A.G.O. Dixon. 2005. Collaborative germplasm and data collection on minor root and tuber crops in Nigeria. NRCRI Annual Report 2005, National Root Crops Research Institute. Umudike, Nigeria.: 77-81.
- Krishnaswamy K (2006). Turmeric The Salt of the Orient is the Spice of Life. New Delhi, pp 8-11, 171, 235.

- Seasonal commodity insight turmeric (2015), retrieved from www.nbhcindia.com
- Tripathi, S. K., Sharma, B., Kumari, P., Deb, P., Ray, R., & Denis, A. F. (2021). Evaluation of Productivity, Quality and Economics of Turmeric Under Different Moisture Regime and Integrated Nutrient Management at Eastern Indo-Gangetic Plains, India. *Agricultural Research*, 10(4), 601-612.
- Willamson, E. (2002). Major herbs of Ayurveda. Edinburgh: Churchill Livingstone.
- Yogesh M S & S Mokshapati (2014), Growth of Indian Exports and Imports of Spices, International Journal of Humanities, arts medicine and sciences, Vol. 2, Issue 9, pp. 41-46