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Abstract. In this article, we investigate the oscillatory behavior of nonlinear

partial differential equations (1) with the boundary condition (2). By using

integral averaging method, we will obtain some new oscillation criteria for

given system. The main results are illustrated through suitable example.
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1. Introduction

Differential equations have a remarkable ability to predict the world around us.

Partial Differential equations form an essential part of the core Mathematics for

scientists and engineering. The origins and applications of such equations occur

in a variety of different fields, such as fluid dynamics, heat conduction and

diffusion, to describe the motion of waves in physics, modeling chemical reactions

in chemistry, the population growth of species. We refer the monographs in the

literature [1, 5, 8, 12, 15, 17]. The qualitative theory of partial differential

equations has attracted a great deal of attention over the last few decades. See

for example [9–11,13,14,16] and the references cited therein.
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In [12], the study of entry-flow phenomenon as a problem of hydrodynamics is

differential equations of the following form

x
′′′

+ a(t)x
′′

+ b(t)x
′
+ c(t)x = f(t)

occurs in many branches of engineering. In the last two decades, there has been

a lot of attention shown on several aspects of differential equations of third order

[2, 6, 7].

Agarwal et al. [3] and Aktas et al. [4] investigated the oscillatory behavior of

nonlinear delay differential equations of the form(
r2(t)

(
r1(t)x

′)′)′

+ p(t)x
′
+ q(t)f(x(g(t))) = 0.

However, there has been no work done on nonlinear partial functional differential

equations given in (1). This motivated our research work.

Formulation of the problem:

In the present article, we consider the oscillatory behavior of functional partial

differential equations of the form

∂

∂t

( 1

r(t)

∂

∂t

( 1

p(t)

( ∂
∂t
u(x, t)

)γ))
+ q(x, t)f (u(x, τ(t)))

= a(t)∆u(x, t) + F (x, t), (x, t) ∈ Ω× R+ = G, (1)

where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω, γ is

the ratio of odd positive integers and ∆ is the Laplacian operator in the Euclidean

N - space RN , ∆u(x, t) =
∑N

r=1

∂2u(x, t)

∂x2
r

with the Robin boundary condition

∂u(x, t)

∂ν
+ µ(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+. (2)

where ν is the unit exterior normal vector to ∂Ω and µ(x, t) is positive continuous

function on ∂Ω× R+.

We shall assume throughout this paper that:

(A1) r(t) ∈ C1([0,∞); [0,∞)), r(t) > 0, p(t) ∈ C2([0,∞); [0,∞)), p(t) > 0,

a(t) ∈ C([0,∞); [0,∞)) and
∫∞

p
1
γ (s)ds =∞;

(A2) q(x, t) ∈ C(Ḡ; [0,∞)), Q(t) = minx∈Ω̄q(x, t) and sup {q(t) : t ≥ T} > 0 for

any T ≥ t0 ≥ 0;
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(A3) f ∈ C(R;R) are convex in [0,∞) with uf(u) > 0, f
′
(u) ≥ 0 for u 6= 0;

(A4) F ∈ C(Ḡ;R) such that
∫

Ω
F (x, t)dx ≤ 0;

(A5) τ ∈ C1([0,∞);R) satisfying τ
′
(t) ≥ 0, τ(t) < t and lim

t→∞
τ(t) =∞.

Definition: A function u ∈ C2(G)∩C1(G) is called a solution of (1) and (2) if it

satisfies (1) in G and the boundary condition (2). The solution u(x,t) of (1) and

(2) is oscillatory in the domain G if for any positive number λ there exists a point

(x0, y0) ∈ Ω× [λ,∞) such that u(x0, y0) = 0 holds.

The main purpose of this paper is to establish some new oscillation criteria for (1)

and (2) by using integral averaging method. Our results are essentially new.

2. Main Results

We use the following notations throughout this paper.

v(t) =

∫
Ω

u(x, t)dx and Ψ(t) =

∫ t

t0

r(s)ds. (3)

Now, we present some new oscillation results.

Theorem 2.1. If the differential inequality

d

dt

(
1

r(t)

d

dt

(
1

p(t)

(
d

dt
v(t)

)γ))
+Q(t)f(v[τ(t)]) ≤ 0, t ≥ t0 (4)

has no eventually positive solution, then every solution of equation (1) and (2) is

oscillatory in Ω× R+.

Proof. Assume for the sake of contradiction that there is a nonoscillatory solution

u(x, t) of (1) and (2) which has no zero in Ω × [0,∞) for some t0 > 0. Then

u(x, t) > 0 for t ≥ t0. Integrating (1) with respect to x over Ω, we have∫
Ω

(
d

dt

(
1

r(t)

d

dt

(
1

p(t)

(
d

dt
u(x, t)

)γ)))
dx+

∫
Ω

q(x, t)f (u(x, τ(t)) dx

=

∫
Ω

a(t)∆u(x, t)dx+

∫
Ω

F (x, t)dx. (5)

By Jensen’s inequality we get
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Ω

(
d

dt

(
1

r(t)

d

dt

(
1

p(t)

(
d

dt
u(x, t)

)γ)))
dx

≥ d

dt

(
1

r(t)

d

dt

(
1

p(t)

∫
Ω

(
d

dt
u(x, t)

)γ
dx

))
≥ d

dt

(
1

r(t)

d

dt

(
1

p(t)

(
d

dt
v(t)

)γ))
, t ≥ t0, (6)

again Jensen’s inequality and (A2) gives,∫
Ω

q(x, t)f (u(x, τ(t)) dx ≥ Q(t)

∫
Ω

f (u(x, τ(t)) dx ≥ Q(t)f(v[τ(t)]), (7)

also using Green’s formula and (2), we get∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂ν
dS = −

∫
∂Ω

µ(x, t)u(x, t)dS ≤ 0, t ≥ t0, (8)

In view of (3), (6)− (8), (A4) and (5) yield

d

dt

(
1

r(t)

d

dt

(
1

p(t)

(
d

dt
v(t)

)γ))
+Q(t)f(v[τ(t)]) ≤ 0, t ≥ t0. �

To construct the operators to the inequality (4)

Define the operators

L0v(t) = v(t), L1v(t) =
1

p(t)

(
d

dt
L0v(t)

)γ
,

L2v(t) =
1

r(t)

d

dt
L1v(t), L3v(t) =

d

dt
L2v(t). (9)

Thus inequality (4) becomes

L3v(t) +Q(t)f (v[g(t])) ≤ 0.

Let us assume that there is a nonoscillatory v(t) of (4). With out loss of generality,

it is further assume that v(t) be an eventually positive solution of (4), then L3v(t) ≤

0 eventually, and hence Liv(t), i = 0, 1, 2 are eventually of one sign.

Here arise two possible cases:

(I) Liv(t) > 0, i = 0, 1, 2 are eventually, or

(II) L0v(t) > 0, L1v(t) < 0 and L2v(t) > 0 eventually.
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Case(I) Let Liv(t) > 0, i = 0, 1, 2 for t ≥ t0 ≥ 0. Then, from (9) we obtain that

L1v(t) =

∫ t

t0

L2v(s)r(s)ds ≥ L2v(t)

∫ t

t0

r(s)ds ≥ L2v(t)ψ(t) for t ≥ t0,

or
v

′
(t) ≥ p

1
γ (t)ψ

1
γ (t)L

1
γ

2 v(t), t ≥ t0.

Integrating from t0 to t, we have

v(t) ≥ L
1
γ

2 v(t)

(∫ t

t0

p
1
γ (s)ψ

1
γ (s)ds

)
.

Let us take D1[t, t0] =
∫ t
t0
p

1
γ (s)ψ

1
γ (s)ds, then

v(t) ≥ D1[t, t0]L
1
γ

2 v(t) for t ≥ t0. (10)

Case(II) Let L0v(t) > 0, L1v(t) < 0 and L2v(t) > 0, t ≥ t0 ≥ 0. Then, for

t ≥ s ≥ t0, which yields that

L1v(t)− L1v(s) =

∫ t

s

L2v(u)r(u)du ≥ L2v(t)

∫ t

s

r(u)du,

−L1v(s) ≥ ψ(t)L2v(t),

or
−v′

(s) ≥ p
1
γ (s)ψ

1
γ (t)L

1
γ

2 v(t)

Thus, we have

v(s) ≥ L
1
γ

2 v(t)

(∫ t

s

p
1
γ (τ)ψ

1
γ (τ)dτ

)
Let D2[t, s] =

∫ t
s
p

1
γ (τ)ψ

1
γ (τ)dτ , then

v(s) ≥ L
1
γ

2 v(t)D2[t, s] for t ≥ s ≥ t0, (11)

Also assume that

−φ(−xy) ≥ φ(xy) ≥ φ(x)φ(y) for xy > 0, (12)

φ(u
1
γ )

u
≥ m > 0, m is a real constant, u 6= 0, (13)

and ∫ ±ε
0

du

φ(u
1
γ )
<∞ forevery ε > 0. (14)
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Theorem 2.2. Assume that (A1) to (A5), (12) and (13) hold. If for t ≥ t0 ≥ 0,

lim sup
t→∞

∫ t

τ(t)

Q(s)f(D1[τ(s), t0])ds >
1

m
(15)

and

lim sup
t→∞

∫ t

τ(t)

Q(s)f(D2[τ(t), τ(s)])ds >
1

m
, (16)

then all the solutions of (1), (2) is oscillatory in G.

Proof. Let v(t) be an eventually positive solution of (4). Then, L3v(t) ≤ 0 and

in view of that Liv(t), i = 1, 2, 3 are eventually of one sign. Which gives two

possibilities (I) and (II). For Case (I), we get (10). Now, there is a T ≥ t0 such

that

v[τ(t)] ≥ D1[τ(t), t0]L
1
γ

2 v[τ(t)] for t ≥ T. (17)

An integration for (4) from τ(t) to t(≥ T ) and from (17), we have

L2v(t)− L2v[τ(t)] ≤ −
∫ t

τ(t)

Q(s)f(v[τ(s)])ds.

This implies that

L2v[τ(t)] ≥ f(L
1
γ

2 v[τ(t)])

∫ t

τ(t)

Q(s)f(D1[τ(s), t0])ds,

or

L2v[τ(t)]

f(L
1
γ

2 v[τ(t)])
≥
∫ t

τ(t)

Q(s)f(D1[τ(s), t0])ds.

Taking limsup on both sides as t→∞, we get a contradiction to (15).

Next, for case (II), replace τ(s) and τ(t) by s and t respectively in (11), we have

v[τ(s)] ≥ D2[τ(t), τ(s)]L
1
γ

2 v[τ(t)] for t ≥ s ≥ t0. (18)

Integrating inequality (4) from τ(t) to t, the proof is same to Case (I), so the

details are omitted. �

Corollary 2.3. Suppose that the conditions (A1) − (A5), (12) and (13) hold. If

(16) holds, then all bounded solutions of (1), (2) is oscillatory in G.
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Theorem 2.4. Assume that (A1) to (A5), (12) and (14) hold. If for t ≥ t0 ≥ 0,∫ ∞
Q(s)f(D1[τ(s), t0])ds =∞ (19)

and ∫ ∞
Q(s)f(D2[τ(t), τ(s)])ds =∞, (20)

then all the solutions of (1), (2) is oscillatory in G.

Proof. Let v(t) be an eventually positive solution of inequality (4). We can proceed

as in the proof of Theorem 2.2. For Case (I), using (12) we have

− d

dt
L2v(t)

f(L
1
γ

2 v(t))
≥ Q(t)f (D1[τ(t), t0]) for t ≥ T ≥ t0.

Integrating T to t, we have that∫ L2v(T )

L2v(t)

du

f(u
1
γ )
≥
∫ t

T

Q(s)f(D1[τ(s), t0])ds.

On both sides, taking limit as t→∞, we get a contradiction to (19).

Next, for Case (II), from (4), we have

−L3v(s) ≥ Q(s)f(v[τ(s)]) ≥ Q(s)f(D2[τ(t), τ(s)])f(L
1
γ

2 v[τ(s)]) for t ≥ s ≥ T ≥ t0,

or

− d

ds
L2v(s)

f(L
1
γ

2 v[τ(s)])
≥ Q(s)f(D2[τ(t), τ(s)]).

The proof is analogous to that of Case (I) and thus the details are omitted. �

Corollary 2.5. Assume that the conditions (A1)− (A5) and (12) hold. If

u

f(u
1
γ )
→ 0 as u→ 0 (21)

and

lim sup
t→∞

∫ t

τ(t)

Q(s)f(D2[τ(t), τ(s)])ds > 0, (22)

then all bounded solutions of (1), (2) is oscillatory in G.
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Theorem 2.6. Suppose that the conditions (A1) − (A5) and (12) hold. If the

inequalities

w
′
(t) +Q(t)f (D1[τ(t), t0]) f

(
w

1
γ [τ(t)]

)
≤ 0, t0 ≥ 0 (23)

and

y
′
(t) +Q(t)f

(
D2

[
t+ τ(t)

2
, τ(t)

])
f

(
y

1
γ

[
t+ τ(t)

2

])
≤ 0 (24)

are oscillatory, then all the solutions of (1), (2) is oscillatory.

Proof. Let v(t) be an eventually positive solution of inequality (4). We can proceed

as in the proof of Theorem 2.2. For Case (I),

d

dt
L2v(t) ≤ −Q(t)f(D1[τ(t), t0])f(L

1
γ

2 v[τ(t)]) for t ≥ T ≥ t0.

Take w(t) = L2v(t) > 0 for t ≥ T , we get (23).

Integrating (23) from t to u as u →∞, we obtain

w(t) ≥
∞∫
t

Q(s)f(D1[τ(s), t0])f(w
1
γ [τ(s)])ds, for t ≥ T.

With this to conclude that there is a positive solution w(t) of (23) with lim
t→∞

w(t) =

0, which is a contradiction to (23) and hence v(t) is oscillatory.

Next, for Case (II), we get (11). Replacing τ(t) for s and
t+ τ(t)

2
for t, we have

v[τ(t)] ≥ D2

[
t+ τ(t)

2
, τ(t)

]
y

1
γ

[
t+ τ(t)

2

]
.

Using the above inequality in (4), take y(t) = L2v(t) > 0 and similar as in Case

(I) above, we get (24). The remaining proof is related to Case (I) above and hence

the details are omitted. �

Corollary 2.7. Suppose that the conditions (A1)− (A5), (12) and (13) hold. If

lim inf
t→∞

∫ t

τ(t)

Q(s)f(D1[τ(s), t0])ds >
1

em
, t0 ≥ 0 (25)

and

lim inf
t→∞

∫ t

t+τ(t)
2

Q(s)f

(
D2

[
t+ τ(t)

2
, τ(t)

])
ds >

1

em
, (26)

then all solutions of (1), (2) is oscillatory in G.
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3. Example

Example 3.1. Consider the nonlinear partial delay differential equation

∂

∂t

(
∂

∂t

(
∂

∂t
u(x, t)

)3
)

+ 3
(
u(x, t− π

2
)
)3

= ∆u(x, t)− 6e−3x cos2 t sin t

− e−x cos t for (x, t) ∈ (0, π)× (0,∞), (27)

with

ux(0, t) + u(0, t) = ux(π, t) + u(π, t) = 0, t ≥ 0. (28)

Here γ = 3, p(t) = r(t) = a(t) = 1, q(x, t) = 3, τ(t) = t − π
2
, f(u) = uγ and

F (x, t) = −6e−3x cos2 t sin t− e−x cos t. Also D2[τ(t), τ(s)] = 3
4
(t− s) 4

3 ,

lim sup
t→∞

∫ t

τ(t)

3f(D2[τ(t), τ(s)])ds = 2.4206635 > 1.

All the conditions of Theorem 2.2 are satisfied. Thus, every solution of (27), (28)

is oscillatory in (0, π)× (0,∞). In fact, u(x, t) = e−x cos t is one such a solution.
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