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1. Introduction

The stability problem for functional equations starts from the famous talk of

Ulam and the partial solution of Hyers to the Ulam’s problem see ( [17] and [6]).

Thereafter, Rassias [14] attempted to solve the stability problem of the cauchy

additive functional equation in a more general setting.

The concept introduced by Rassias’s theorem significantly influenced a number

of mathematicians to investigate the stability problems for various functional

equations see ( [1], [3], [6], [7], [8], [9], [10], [16], [20]).

In 2013, Fridoun Moradlou [5] proved the generalized Hyers-Ulam-Rassias

stability of the Euler-Lagrange-Jensen Type Additive mapping in Multi-Banach

Spaces. In 2015, Xiuzhong Yang, Lidan Chang, Guofen Liu [19] estabilished the

orthogonal stability of mixed additive-quadratic jensen type functional equation

in Multi-Banach Spaces. In 2016, Sattar Alizadeh, Fridoun Moradlou [15] proved

the generalized Hyers-Ulam-Rassias stability of the quadratic mapping in

multi-Banach spaces.
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Choonkil Park, Jian Lian CUI, Madjid Eshaghi GORDJI [2], proved the

Hyers-Ulam stability of an orthogonally quintic functional equation in Banach

Spaces.

Theorem 1.1. [13] Let (X, d) be a complete generalized metric space and let T :

X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then for

each given element x ∈ X, either

d(T n, T n+1x) =∞

for all nonnegative integers n or there exists a positive integer m such that

(1) d(T n, T n+1x) <∞,∀n ≥ m;

(2) the sequence {T nx} converges to a fixed point u∗ of T;

(3) u∗ is the unique fixed point of T in the set Y = {u ∈ X : d(Tmx, u) <∞} ;

(4) d(u, u∗) ≤ 1

1− α
d(u, Tu) for all u ∈ Y.

Definition 1.2. [4] A Multi- norm on
{
℘k : k ∈ N

}
is a sequence

(‖.‖) = (‖.‖k : k ∈ N) such that ‖.‖k is a norm on ℘k for each k ∈ N, ‖x‖1 = ‖x‖

for each x ∈ ℘, and the following axioms are satisfied for each k ∈ N with k ≥ 2 :

(1)
∥∥(xσ(1)...xσ(k))∥∥k = ‖(x1...xk)‖k , for σ ∈ Ψk, x1...xk ∈ ℘;

(2) ‖α1x1...αkxk‖k ≤ (maxi∈Nk
|αi|) ‖(x1...xk)‖k for α1...αk ∈ C, x1, ..., xk ∈ ℘;

(3) ‖(x1, ..., xk−1, 0)‖k = ‖(x1, ...xk−1)‖k−1 , for x1, ...xk−1 ∈ ℘;

(4) ‖(x1...xk−1, xk−1)‖k = ‖(x1...xk−1)‖k−1 for x1...xk−1 ∈ ℘.

In this case, we say that
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - normed space.

Suppose that
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - normed spaces, and take k ∈ N.

We need the following two properties of multi - norms. They can be found in [4].

(a) ‖(x, ...x)‖k = ‖x‖ , forx ∈ ℘,

(b) max
i∈Nk

‖xi‖ ≤ ‖(x1, ..., xk)‖k ≤
k∑
i=1

‖xi‖ ≤ kmax
i∈Nk

‖xi‖ , forx1, ..., xk ∈ ℘.

It follows from (b) that if (℘, ‖.‖) is a Banach space, then (℘k, ‖.‖k) is a Banach

space for each k ∈ N; In this case,
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - Banach space.
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Definition 1.3. [12] Suppose that X is a vector space (algebraic module) with

dimX ≥ 2, and ⊥ is a binary relation on X with the following properties:

(1) Totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ X;

(2) Independence: If x, y ∈ X − 0 and x⊥y, then x and y are linearly

independent;

(3) Homogeneity: If x, y ∈ X and x⊥y, then αx⊥βy for all α, β ∈ R;

(4) Thalesian properity: If P is a 2-dimensional subspace of X, x ∈ P and

λ ∈ R+ which is the set of non-negative real numbers, then there exists

y0 ∈ P such that x⊥y0 and x+ y0⊥λx− y0.

The pair (X,⊥) is called an orthogonality space (resp., module). By an

orthogonality normed space (normed module) we mean an orthogonality space

(resp., module) having a normed (resp., normed module) structure.

In this paper, we achieve the Hyers - Ulam stability in orthogonally quintic

functional equation in Multi-Banach Spaces

Df(x, y) = f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)

−10f(y)− f(3x) + 3f(2x) + 27f(x). (1.1)

Theorem 1.4. Let X be an orthogonality space and let
(
(Y k, ‖.‖) : K ∈ N

)
be a

multi-Banach Suppose that β is a nonnegative real number and f : X → Y is a

mapping satisfying

sup
k∈N
‖(Df(x1, y1), ..., Df(xk, yk))‖k ≤ β (1.2)

x1, ..., xk, y1, ..., yk ∈ P and xi⊥yi (i = 1, 2...k) and f(0) = 0. Then there exists a

unique orthogonally quintic mapping Q5 : X → Y such that

sup
k∈N
‖(f(x1)−Q5(x1), ..., f(xk)−Q5(xk))‖k ≤

1

31
β (1.3)

x1, x2, ..., xk ∈ X.

Proof. Letting y1 = y2 =, ...,= yk = 0 in (1.2), we obtain that

sup
k∈N
‖(32f(x1)− f(2x1), ..., 32f(xk)− f(2xk))‖ ≤ β (1.4)

for all x1, ..., xk ∈ X, xi⊥0 where(i = 1, 2, ..., k).
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Dividing on both side by 32 in (1.4), we get

sup
k∈N

∥∥∥∥(f(x1)−
1

32
f(2x1), ..., f(xk)−

1

32
f(2xk)

)∥∥∥∥ ≤ 1

32
β (1.5)

Let Λ = {g : P → Q|g(0) = 0} and introduce the generalized metric d defined on

λ by

d(l,m) = inf

{
λ ∈ [0,∞]| sup

k∈N
‖l(x1)−m(x1), ..., l(xk)−m(xk)‖k ≤ λ ∀x1, ..., xk ∈ X

}
Then it is easy to show that Λ, d is a generalized complete metric space. See [11].

We define an operator J : P → P by

J l(x) =
1

32
l(2x) x ∈ X.

We assert that J is a strictly contractive operator. Given l,m ∈ Λ, let λ ∈ [0,∞]

be an arbitary constant with d(l,m) ≤ λ. From the definition d, if follows that

sup
k∈N
‖l(x1)−m(x1), ..., l(xk)−m(xk)‖k ≤ λ x1, ..., xk ∈ X.

Therefore,

sup
k∈N
‖(J l(x1)− Jm(x1), ...,J l(xk)− Jm(xk))‖k

≤ sup
k∈N

∥∥∥∥( 1

32
l(2x1)−

1

32
m(2x1), ...,

1

32
l(2xk)−

1

32
m(2xk)

)∥∥∥∥
k

≤ 1

32
λ

x1, ..., xk ∈ X.

Hence,it holds that

d(J l,Jm) ≤ 1

32
λd(J l,Jm) ≤ 1

32
d(l,m) ∀l,m ∈ Λ.

This Means that J is strictly contractive operator on Λ with the Lipschitz constant

L =
1

32
.

By (1.5), we have d(J f, f) ≤ 1

32
β < ∞. According to Theorem 1.1, we deduce

the existence of a fixed point of J that is the existence of mapping Q5 : P → Q

such that

Q5(2x) = 32Q5(x) ∀x ∈ X.
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Moreover, we have d (J nf,Q5)→ 0, which implies

Q5(x) = lim
n→∞

J nf(x) = lim
n→∞

f(2nx)

32n

for all x ∈ X.

Also, d(f,Q5) ≤
1

1− L
d(J f, f) implies the inequality

d(f,Q5) ≤
1

1− 1

32

d(J f, f)

≤ 1

31
β.

Considering Definition, we have 2nx⊥2ny. Set x1 =, · · · ,= xk = 2nx, y1 =, · · · ,=

yk = 2ny in (1.2) and divide both sides by 32n. Then, using property (a) of

multi-norms, we obtain

‖DQ5(x, y)‖ = lim
n→∞

1

32n
‖Df (2nx, 2ny)‖

≤ lim
n→∞

β

32n
= 0

for all x, y ∈ X. Hence Q5 is Quintic.

The uniqueness of Q5 follows from the fact that Q5 is the unique fixed point of J

with the property that there exists ` ∈ (0,∞) such that

sup
k∈N
‖(f(x1)−Q5(x1), ..., f(xk)−Q5(xk))‖k ≤ `

for all x1, ..., xk ∈ X.

This completes the proof of the Theorem. �

Theorem 1.5. Let φ : X2k → [0,∞) be a function such that there exists an α < 1

with

φ(x1, y1, .., xk, yk) ≤ 32αφ
(x1

2
,
y1
2
, ..,

xk
2
,
yk
2

)
(1.6)

for all xi, yi ∈ X with xi⊥yi, where i = 1, .., k. Let f : X → Y be a mapping

satisfying f(0) = 0 and

‖Df(x1, y1, .., xk, yk)‖ ≤ φ(x1, y1, .., xk, yk) (1.7)
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for all xi, yi ∈ X with xi⊥yi, where i = 1, .., k. Then there exists a unique

orthogonally quintic mapping Q5 : X → Y such that

‖(f(x1)−Q5(x1), ..., f(xk)−Q5(xk))‖ ≤
α

1− α
φ(x1, 0, ..., xk, 0) (1.8)

for all xi ∈ X, where i = 1, .., k.

Proof. Taking yi = 0 in (1.7), we get

‖(32f(x1)− f(2x1), .., 32f(xk)− f(2xk))‖ ≤ φ (x1, 0, .., xk, 0) (1.9)

for all xi ∈ X, since xi⊥0, where i = 1, .., k. So∥∥∥∥(f(x1)−
1

32
f(2x1), ..., f(xk)−

1

32
f(2xk)

)∥∥∥∥ ≤ αφ (x1, 0, .., xk, 0) (1.10)

for all xi ∈ X, where i = 1, .., k. Consider the set G : h : X → Y and introduce

the generalized metric on G.

d(g, h) = inf {µ ∈ R+ : ‖(g(x1)− h(x1), .., g(xk)− h(xk))‖ ≤ µφ (x1, 0, .., xk, 0) ∀xi ∈ X}

where i = 1, .., k. It is easy to prove that (G, d) is complete.See [11]. It follows

from (1.10) that d(f, Jf) ≤ α. The rest of the proof is similar to the proof of

Theorem 1.1. �

Corollary 1.6. Let θ be a positive real number and p a real number with p > 5.

Let f : X → Y be a mapping satisfying

‖(Df(x1, y1, .., xk, yk))‖ ≤ θ (‖x1‖p + ‖y1‖p , ..., ‖xk‖p + ‖yk‖p) (1.11)

for all xi, yi ∈ X, since xi⊥yi, where i = 1, .., k. Then there exists a unique

orthogonally quintic mapping Q5 : X → Y such that

‖(f(x1)−Q5(x1), ..., f(xk)−Q5(xk))‖ ≤
2pθ

32− 2p
(‖x1‖p , ..., ‖xk‖p)

for all xi ∈ X, where i = 1, .., k.

Proof. The proof follows from Theorem1.5 by taking

φ(x1, y1, .., xk, yk) = θ (‖x1‖p + ‖y1‖p , .., ‖xk‖p + ‖yk‖p) for all xi, yi ∈ X, since

xi⊥yi, where i = 1, .., k. Then we can choose α = 2p−5 and we get the desired

result. �
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