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Abstract. In this paper, we establish convolution theorem, discrete Fourier

transform, discrete Green’s and Gauss Divergence theorems using a generalized

difference operator and its equation. Also we present few examples verified by

MATLAB to illustrate the theorems.
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1. Introduction

Fractional calculus and fractional difference equations have undergone

expanded study in recent years as a considerable interest both in Mathematics

and in applications. They were applied in modeling of many physical and

chemical processes and in engineering [1–4]. The theory of generalized difference

operator ∆` defined as ∆`v(k) = v(k + `) − v(k) is developed in [7]. So in this

paper, we extend the theory of ∆` to the calculus of real functions for finding the

values of some integral theorems using the inverse of generalized difference

operator ∆`.
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We complete this introduction with a brief description of the paper. This

paper has five sections. In Section 2, we present some preliminary results. In

Section 3, we derive convolution theorem for discrete Fourier transform for the

sequence of real numbers. In section 4, we present the discrete Green’s theorem

and Gauss Divergent theorem.

2. Preliminaries

In this section, we present some notations and preliminary results on

generalized difference operator which will be used for the subsequent discussions.

For simplicity, we use the following notations:

(i) ∆−1
`1→n

= ∆−1`1
∆−1`2

∆−1`3
· · ·∆−1`n

; (ii) ∆−1
`1,n

= ∆−1`1
∆−1`n

Lemma 2.1. [7] Let smr and Sm
r be the Stirling numbers of first and second kinds

respectively and k
(m)
` = k(k − `) · · · (k − (m− 1)`). Then we have

k(m)
q =

m∑
r=1

smr q
m−rkr, km =

m∑
r=1

Sm
r qm−rk(r)

q (1)

and
∆−n` k

(m)
` =

k
(m+n)
`

`n(m + n)(n)
. (2)

3. Discrete Convolution Theorem and Fourier Transform

In this section, we establish discrete convolution theorem and discrete

Fourier transform based on generalized operator ∆`. When ` → 0, we get

convolution theorem and Fourier transform.

Definition 3.1. Let f and g be two bounded functions on (−∞,+∞). Then the

convolution of f and g is defined as

h`(x) = `∆−1` f(t)g(x− t)
∣∣∞
−∞ . (3)

We also write h = f ∗ g to denote this function. It is easy to see that f ∗ g = g ∗ f.

Theorem 3.2. Let R = (−∞,∞). Assume that f, g ∈ L(R) and that either f or

g is bounded on R. Then the discrete convolution intgral

h`(x) = `∆−1` f(t)g(x− t)
∣∣∞
−∞ (4)
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exists for every x in R and the function h so defined is bounded on R. If, in

addition, the bounded function f or g is continuous on R, then h is also continuous

on R and h ∈ L(R).

Proof. Since f ∗ g = g ∗ f , it suffices to consider the case in which g is bounded.

Suppose |g| ≤M . Then

|f(t)g(x− t)| ≤M |f(t)| . (5)

and f(t)g(x-t) is a measurable function of t on R. So the discrete integral for h(x)

exists and from (3) and (5), h is bounded on R. Also if g is continuous on R, then

h is continuous on R. Now for every compact interval [a, b], we have(
`∆−1` |h`(x)|

)∣∣b
a

= `∆−1` |f(t)|∞−∞ `∆−1` |g(x− t)|ba≤ `∆−1` |f(t)|∞−∞ `∆−1` |g(y)|∞−∞ .

so h ∈ L(R). �

Here, we present the Discrete Convolution and Fourier Transforms.

Theorem 3.3. Let L(R) =set of all Lebesgue integrable functions on R. Assume

that f, g ∈ L(R) and that atleast one of f or g is continous and bounded on R. Let

h` denotes the convolution and h` = f ∗ g. Then, for every real u, we have

`∆−1` h`(x)e−ixu
∣∣∞
−∞ =

(
`∆−1` f(t)e−itu

)∣∣∞
−∞

(
`∆−1` g(y)e−iyu

)∣∣∞
−∞ . (6)

Proof. Assume that g is continuous and bounded on R. Let an and bn be two

increasing sequences of positive real numbers such that an → +∞ and bn → +∞.

Define a sequence of function fn on R as fn(t) = `∆−1` e−iuxg(x− t)
∣∣bn
−an

.

Since
∣∣`∆−1` e−iuxg(x− t)

∣∣∣∣bn
−an
≤ |g|∞−∞ for all compact intervals [a,b],

lim
n→∞

fn(t) = `∆−1` e−iuxg(x− t)
∣∣∞
−∞ = `∆−1` e−iu(t+y)g(y)

∣∣∞
−∞ ., (7)

Now, continuity of fn on R results f.fn is measurable on R and hence f.fn is

Discrete Lebesgue-integral on R. Also by Lebesgue dominated convergence

theorem,

lim
n→∞

`∆−1` f(t)fn(t)
∣∣∞
−∞ =

(
`∆−1` f(t)e−itu

)∣∣∞
−∞

(
`∆−1` g(y)e−iyu

)∣∣∞
−∞ . (8)

But from (7) and (3), lim
n→∞

`∆−1` f(t)fn(t)
∣∣∣∞
−∞

= `∆−1` e−iuxh(x)
∣∣bn
−an

, which

completes the proof. The Discrete integral on the left also exists as an improper
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Riemann integral is continuous and bounded on R and

`∆−1` |h(x)e−iux| ≤ ∆−1` h
∣∣∞
−∞ for every compact interval [a,b]. �

An example verified by MATLAB is given below to illustate Theorem 3.3:

Example 3.4. consider the following functions

f(t) =

t : t ∈ (0,∞)

0 : t ∈ (−∞, 0) ,
g(y) =

e−y−2t : t ∈ (0,∞)

0 : t ∈ (−∞, 0)
.

Then, we have h`(x) = `∆−1` f(t)g(x− t)
∣∣∞
−∞ = `∆−1` te−(x+t)

∣∣∞
0

=
`2e−(x+`)

(e−` − 1)2
.

Also `∆−1` h(x)e−ixu
∣∣∞
−∞ =

`3

(e−` − 1)2(e−`(1+iu) − 1)

{
e−b(1+iu)−` − ea(1+iu)−`} and

(`∆−1` f(t)e−itu)
∣∣∞
−∞(`∆−1` g(y)e−iyu)

∣∣∞
−∞=(`∆−1` te−itu)

∣∣∞
0

(`∆−1` e−(x+t)e−iu(x−t))
∣∣b
−a

=
`3

(e−` − 1)2(e−`(1+iu) − 1)

{
e−b(1+iu)−` − ea(1+iu)−`} . (9)

Hence from (3) and (9), Theorem 3.3 is verified.

MATLAB Coding : ((exp(−5 ∗ (1 + i ∗ u) + `) − exp(5 ∗ (1 + i ∗ u) − `)) ∗ `. ∧

3)./((exp(`)− 1). ∧ 2 ∗ (exp(−` ∗ (1 + i ∗ u))− 1));

The portrait of the given functions f(t) and g(y) with y = −10 before applying

the inverse operator is given in fig1 and in fig2, we plot the result of convolving

f(t) with g(y) after applying the inverse operator for different values of ` with

a = b = 5.

Similarly, we can apply ∆` theory to Green’s and Gauss divergence theorems.



Some Integral Theorems Based on Generalized Difference Operator · · · 75

4. Discrete Green’s and Gauss Divergent Theorems

In this section we derive the generalized discrete Green’s Theorem and

discrete Gauss divergence theorem using ∆−1` .

Theorem 4.1. If R is a closed region of the xy plane bounded by a simple closed

curve C, which is traversed in the anticlockwise direction and M and N are

functions of x and y, having continuous partial derivatives in R, then(
`1∆

−1
`1
M + `2∆

−1
`2
N
)∣∣

C
= `1`2 ∆−1

`1,2

(∂N
∂x
− ∂M

∂y

)∣∣∣
R
. (10)

Proof. Let the equations of the curves AEB and AFB be y = Y1(x) and y = Y2(x)

respectively. If R is the region bounded by C, then we have

`1`2 ∆−1
`1,2

∂M

∂y

∣∣∣
R

= `1∆
−1
`1

(
M(x, Y2)−M(x, Y1)

)∣∣b
a

= −`1∆−1`1
M
∣∣
C
. (11)

If x = X1(y) and x = X2(y) are the curves EAF and EBF respectively, then

`2∆
−1
`2
N
∣∣
C

= `1`2 ∆−1
`1,2

∂N

∂x

∣∣∣
R
. (12)

Hence the proof follows from (11) and (12). �

Example 4.2. Let M=3x2 − 8y2, N=4y − 6xy and C is the rectangle formed by

the lines x = 0, x = 1, y = 0, y = 2 in the XOY plane.

Then using (10) and from (2), we get(
`1∆

−1
`1
M + `2∆

−1
`2
N
)∣∣

C
= `1`2 ∆−1

`1,2
10y

∣∣∣∣2
0

∣∣∣∣∣
1

0

= 10(2− `2).

Remark 4.3. When `2 → 0,
(
`1∆

−1
`1

(3x2 − 8y2) + `2∆
−1
`2

(4y − 6xy)
)∣∣

C
= 20.

The following is the discrete version of generalized Gauss Divergence Theorem.
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Theorem 4.4. If V is the volume of a closed surface S and A is a vector point

function with continous first partial derivatives in V, then we have(
`2`3 ∆−1

`2,3
A1 + `1`3 ∆−1

`1,3
A2 + `1`2 ∆−1

`1,2
A3

)∣∣
S

= `1`2`3 ∆−1
`1→3

(∇. ~A)
∣∣
V
. (13)

Proof. Let S be a closed surface such that no line parallel to the co-ordinate axes

intersect it in more than two points. Let the cylinder whose generators are parallel

to the z-axis and which envelops the surface S, touch S along the curve ’C’ and

intersects the xy plane along the curve. Now the curve C divides the surface S

into two parts, say S1 and S2, whose equations are z = f1(x, y) and z = f2(x, y)

respectively. If A = A1
~i + A2

~j + A3
~k and R is the area enclosed by C in the xy

plane, then by considering the volume integral of ∂A3

∂z
over the region enclosed by

S, we get

`1`2`3 ∆−1
`1→3

∂A3

∂z

∣∣∣
V

= `1`2`3 ∆−1
`1→3

∂A3

∂z

∣∣∣z=f2

z=f1

∣∣∣
R

= `1`2 ∆−1
`1,2

(
A3(x, y, f2)− A3(x, y, f1)

)∣∣
R

`1`2`3 ∆−1
`1→3

∂A3

∂z

∣∣∣
V

= `1`2 ∆−1
`1,2

(
A3

~k.n̂
)∣∣

S
. (14)

Similarly, by projecting S on the other co-ordinate planes, we get

`1`2`3 ∆−1
`1→3

∂A1

∂x

∣∣∣∣
V

= `2`3 ∆−1
`2,3

(
A1
~i.n̂
)∣∣

S
, (15)

and
`1`2`3 ∆−1

`1→3

∂A2

∂y

∣∣∣
V

= `1`3 ∆−1
`1,3

(
A2

~j.n̂
)∣∣

S
. (16)

Adding (14), (15) and (16) completes the proof of the theorem. �

Example 4.5. Let A1 = x3 − yz, A2 = 2x2y, A3 = z and S is the surface of the

cube bounded by coordinate planes x = y = z = 0 and the planes x = y = z = a.
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Then ∇ · Â = x2 + 1. So from (2) and (1), (13) becomes(
`2`3 ∆−1

`2,3
(x3 − yz)− `1`3 ∆−1

`1,3
2x2y + `1`2 ∆−1

`1,2
z
)∣∣

S

= `1`2`3 ∆−1
`1→3

(x2 + 1)
∣∣a
0

∣∣∣a
0

∣∣∣∣a
0

= a3
{

(a− `1)(a− `2)

3
+ `1(a− `1) + 1

}
.

Remark 4.6. When `1, `2 → 0, weget(
`2`3 ∆−1

`2→3

(x3 − yz)− `1`3 ∆−1
`1,3

2x2y + `1`2 ∆−1
`1→2

z
)∣∣

S
= a3

(a2
3

+ 1
)
.

5. Conclusion

In this paper, we have derived discrete convolution theorem, Green’s

theorem and Gauss Divergence theorem using the difference operator ∆`. The

applications of the theorems are quite diverse and playing an important role in

the field of electricity and magnetism.
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