
J. Comp.Matha. Vol.2(1), (2018). ISSN: 2456–8686

Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in
ISSN: 2456-8686

O
ri

g
in

a
l 

R
e

se
a

rc
h

 A
rt

ic
le

SACRED HEART RESEARCH PUBLICATIONS

Bounds on the Connected Domination in Graphs

1J.Vinolin , 2D.S.T.Ramesh, 3S.Athisayanathan and 4A.Anto Kinsley

Received on 07 January 2018, Accepted on 10 May 2018

Abstract. A set S ⊆ V of a connected graph G is a hop dominating set of G

if for every vertex v ∈ V S there exists a vertex u ∈ S such that d (u, v) = 2.

The cardinality of a minimum hop dominating set of G is called the hop

domination number and is denoted by γh(G). A hop dominating set D of a

graph G is said to be a connected hop dominating set of G if the induced

subgraph < D > is connected. The cardinality of a minimum connected hop

dominating set is called the connected hop domination number of G and it is

denoted by γch (G). In this paper some graphs G are characterized for which

γh(G) = 2. Bounds based on diameter, girth and maximum degree for γh(G)

are developed. In addition the hop domination number of wounded spider is

computed. The hop dominating sets are compared to the distance-2

dominating sets. An important result is proved that if G1, G2, . . . , Gs are the

connected proper subgraphs of G with minimum connected hop dominating

sets D1, D2, . . . , Ds as then γch (G) ≤ γch (Gi) + 2s.

Key words: Graphs, distance, domination number, distance domination

number, Hop domination number, Connected Hop domination number.

1. Introduction

Graph theory has immense application in the field of communication networks,

interpersonal relations and several real life situations. Domination in graphs is

one of the fastest growing areas in Graph theory. It was studied from 1950s
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onwards, but the rate of the research on domination significantly increased in the

mid - 1970s. Several domination parameters can be found in the book [5] written

by Haynes et al. For basic graph theoretic terminology we refer to [3]. By a

graph G = (V,E) we mean a finite undirected connected graph without loops or

multiple edges. For vertices x and y in a connected graph G, the distance d (x, y)

is the length of the shortest x − y path in G. For any vertex u of G, the

eccentricity of u is e (u) = {d (u, v) : v ∈ V }. The radius rad(G) and the

diameter diam(G) are defined by rad (G) = min{e (v) : v ∈ V } and

diam (G) = max{e (v) : v ∈ V }. The girth of a graph G is the length of a

shortest cycle contained in the graph. If the graph does not contain any cycles,

its girth is defined to be infinity. For example, a 4-cycle has girth 4. S.K.

Ayyaswamy et al. [1] have recently defined a new domination parameter called

hop domination number of a graph. The definition is as follows: A set S ⊆ V of

a graph G is a hop dominating set of G if for every vertex v ∈ V − S there exists

a vertex u ∈ S such that d(u, v) = 2. The cardinality of a minimum hop

dominating set of G is called the hop domination number and is denoted by

γh(G). In [1] S.K. Ayyaswamy et al. characterized the family of trees and

unicyclic graphs for which γh (G) = γt (G) and γh (G) = γc (G) where γt (G) and

γc (G) are the total domination and connected domination numbers of G

respectively. Then they presented the strong equality of hop domination and hop

independent domination number of trees. But in this paper we present some

bounds for hop domination number based on diameter, girth and maximum

degree and characterised graphs for which γh (G) = 2.

Example 1.1.

Figure 1. A graph G
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In the above graphG, the set S = {v1, v9, v8} is said to be the hop dominating set

of G. Since each vertex in the set S hop dominates the vertices in V −S.Therefore

γh (G) = 3.

In the above graph the usual minimum dominating set is D = {v2, v5, v7, v10}.

But the minimum hop dominating set is S = {v1, v9, v8}. Therefore, we can say

that γh (G) ≤ γ (G) for some graphs G.

In a complete graph every vertex is at a distance 1 from every other vertex.

Take S = V and so V − S = Φ. Hence, γh (Kn) = n [1].

Consider the star K1,n 1, where u is the unique central vertex of G, and v any

end vertex of G. Then S = {u, v} is the hop dominating set of G and it is the

minimum. Therefore, γh (K1,n 1) = 2.

2. Characterization of graphs for which γh (G) = 2

Construction of a graph G obtained from C4 by adding pendent vertices to at

most two of the vertices of C4.

Figure 2. C4 and the reconstructed graph

Theorem 2.1. If G is a connected graph of order n containing a unique cycle Cn,

then γh (G) = 2 if and only if G is obtained from Cn (n = 4, 5, 6) by adding zero

or more pendent vertices to at most two of the vertices of Cn.

Proof. If G is obtained from Cn, where n = 4, 5, 6, by adding zero or more pendent

vertices to at most two of the vertices then it is easy to verify that γh (G) = 2.
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Conversely suppose that γh (G) = 2. Then G cannot have a cycle of length at

least 7. By controversy if v1, v2, v3, v4, v5, v6, v7 are the consecutive vertices on a

cycle of length at least 7, then {v1, v6, v7} is the hop dominating set of G which is

a contradiction to our assumption that γh (G) = 2. Suppose no pendent vertices

are added to Cn (n = 4, 5, 6) then the hop domination number of Cn is 2. Assume

that G is a graph obtained from Cn by adding pendent vertices to at least three of

the vertices of Cn. Then among the three vertices at which the pendent vertices

are added, pendent vertices added at two of these vertices are dominated by the

hop dominating vertices of Cn. And to dominate the pendent vertices added to

the remaining vertex we need to choose another vertex from Cn. This increases

the domination number by 1. This is a contradiction to our assumption that

γh (G) = 2. Therefore the graph G obtained from Cn (n = 4, 5, 6) by adding any

number of pendent vertices to at most two of the vertices of Cn. �

Now we construct a graph G obtained from C3 by adding pendent vertices to at

least two of the vertices of C3.

Figure 3. C3 and the reconstructed graphs

Theorem 2.2. If a graph G is obtained from C3 by adding any number of pendent

vertices to at least two of the vertices of C3, then γh (G) = 2.

Proof. Let G be obtained from C3 by adding more pendent vertices to at least any

two of the vertices of C3. See the above figure. Now we consider the following two

cases:
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Case 1: If the pendent vertices are added to any two of the vertices C3. (See

figure 3: (ii))

Without loss of generality we may assume that v1 and v3 be the two vertices of

C3 to which the pendent vertices are added. Let v4 and v5 be the pendent vertices

added to v1 and v3 respectively. Then {v4, v5} is the minimum hop dominating set

of G. Then γh (G) = 2.

Case 2: If the pendent vertices are added to all the vertices of C3.

Let v4, v5, v6 be the pendent vertices added to v1, v3 and v2 wrespectively as

shown in the figure 3-(iii). Similarly we can prove that {v2, v6} is the minimum

hop dominating set of G. Thus γh (G) = 2 �

Note 2.3. It is not possible to construct a unicyclic graph from Cn (n > 6) by

adding zero or more pendent vertices to the vertices of Cn such that γh (G) = 2.

Because in general for the graph Cn (n > 6) itself γh (G) = 3. If we construct a

graph from Cn (n > 6) by adding zero or more pendent vertices to the vertices of

Cn, the hop domination number should be greater than or equal to 3.

Next we develop some bounds having diameter, girth and maximum degree for

γh (G)

3. Bounds based on diameter, girth and maximum degree ∆

Theorem 3.1. If G is a connected graph with diameter d ≥ 3, then γh (G) ≥ d+1
5
.

Proof. Let P : u0, u1, · · · , ud be a diametral path in G, joining the two peripheral

vertices u = u0 and v = ud. Then P has length d. We show that every vertex of

G hop dominates at most 5 vertices of P . Suppose to the contrary that there

exists a vertex w ∈ V (G) (may be in P) that hop dominates at least 6 vertices of

P . Let Q be the set of vertices on the path P that are hop dominated by the

vertex w in G. Then, by our supposition, |Q| ≥ 6. Let i and j be the smallest

and largest integers respectively, such that ui ∈ Q and uj ∈ Q. Therefore,

Q ⊆ {ui, ui+1, · · · , uj}. Thus, 6 ≤ |Q.| ≤ ji + 1. Since P is the shortest (u, v)

path in G and Q ⊆ {ui, ui+1, · · · , uj} , therefore dG (ui, uj) = dP (ui, uj) ≥ 5. Let

Pi be the shortest (ui, w) path in G and Pj be (ui, w) the shortest (w, uj) path in
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G. Since the vertex w hop dominates both ui and uj in G, both paths Pi and Pj

have length at most 2, therefore the path obtained by Pi proceeding Pj has

length at most 4 implying that d (ui, uj) ≤ 4, which is a contradiction. Therefore

every vertex of G hop dominates at most 5 vertices of P . Let S be the minimum

hop dominating set of G. Then |S| = γh (G). Since each vertex of S hop

dominates at most 5 vertices of P then S hop dominates 5 (|S|) vertices of P .

However S is a hop dominating set of G, every vertex of P is hop dominated by

the set S and so S hop dominates |V (P )| = d + 1 vertices of P . Therefore

|S| (4 + 1) ≥ d+ 1, or, equivalently, γh(G) ≥ (d+ 1)/5. �

The following theorem founds a lower bound for γh(G) having girth G of G.

Theorem 3.2. If G is a connected graph with girth g, then γh(G) ≥
⌈
g+1
3

⌉
Proof. We prove this theorem by induction on the girth g of G. If G is a connected

graph with girth 3, then it is easy to verify that γh(G) ≥
⌈
g+1
3

⌉
. Now we assume

that the inequality holds for any connected graph G with girth g − 1. Now we

prove for the case of the connected graph G with girth G. Let G be a connected

graph G with girth g− 1. Then by our assumption the inequality holds for G. Let

G be the graph obtained from G by subdividing any edge in the shortest cycle of

G. Now the graph G has girth g. If the newly added vertex is dominated by any

one of the vertices in the hop dominating set of G then the same set will be the

hop dominating set of G also. So left hand side of the inequality remains the same

and the right hand side of the inequality increases by one. Hence the equality

holds. Therefore, γh(G) =
⌈
g+1
3

⌉
. If the newly added vertex is not dominated by

the vertices in the hop dominating set of G′ then we have to choose a vertex in

order to dominate the newly added vertex. And so both the sides of the inequality

increases by one or remains the same as previous case by the choice of the vertex

selected to dominate the newly added vertex. Therefore in this case γh(G) ≥
⌈
g+1
3

⌉
.

Therefore for any connected graph G with G γh(G) ≥
⌈
g+1
3

⌉
.

We prove a result in tree T that γh (T ) ≤ ∆ (T ) which is a relation between

hop domination and maximum degree ∆ (T ) of T . But generally this relation
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γh (T ) ≤ ∆ (T ) is not true for all trees unless we add some conditions. Here we

give one of such conditions that nl ≤ ∆ (T ) where l is the number of pendent

vertices in T . We prove this in the following theorem. �

Theorem 3.3. If T is a tree of order n ≥ 3 and nl ≤ ∆ (T ) where l is the number

of pendent vertices in T , ∆ (T ) maximum degree of T , then γh (T ) ≤ ∆ (T ).

Proof. Let T be a tree of order n ≥ 3. Let l be the number of end vertices in the tree

T . These end vertices are not included in the hop dominating set of T because

it harms the minimality of the hop dominating set. Therefore, γh (T ) ≤ nl .

Let ∆ (T ) be the maximum degree of the tree T . Since any tree T has at least

∆ (T ) end vertices and nl ≤ ∆ (T ) we have γh (T ) ≤ nl ≤ ∆ (T ). This implies

that γh (T ) ≤ ∆ (T ). �

Theorem 3.4. Let G be a connected graph that contains a cycle. Let C be the

shortest cycle in G. If v is a vertex of G outside C that hop dominates two vertices

(say) u and w of C, then there exists a shortest path (u, v) that does not contains

w and a shortest (v, w) path that does not contain u.

Proof. Since, v is a vertex not on C, it has a distance at least one to every vertex

of C. Let Q = {u,w} be the set of vertices that are hop dominated by v. Thus,

Q ⊆ V (C) and |Q| = 2. Since, there are two vertices at a distance one from u

on C and w is hop dominated by v, w is at a distance two from u on the cycle

C. Therefore, dG (v, w) = dG (u, v). Let Pu be a shortest (u, v) path and Let

Pw be a shortest (v, w) path in G. If w ∈ V (Pu) , then dG (v, w) < dG (u, v) ,

contradicting the fact that dG (v, w) = dG (u, v). Therefore, w /∈ V (Pu). Similarly,

if u ∈ V (Pv) , then dG (u, v) < dG (v, w) , contradicting the fact that dG (v, w) =

dG (u, v). Therefore, u /∈ V (Pv). �

Theorem 3.5. For any connected graph G with vertex cut R and if |R| ≥ 2, then

γh (G) < |R|+ k, where k is the number of vertices in the open neighborhood of R.

Proof. Let G be a connected graph with vertex cut R such that |R| ≥ 2. Let

N (R) be the open neighborhood of R and let |N (R)| = k. Since, R is a vertex
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cut of G, the removal of R from the vertex set of G results in a disconnected graph.

Therefore, each vertex in R is adjacent to at least one vertex in v−R. This implies

that each vertex in R hop dominates the vertices which are adjacent to the vertices

in N (R). If the set R hop dominates the graph G, then R is our hop dominating

set of G. If there are some vertices in G which are not hop dominated by the

vertices in R, we can choose vertices from N (R) to dominate those vertices. In

general, we need to choose at most |R| + |N (R)| vertices to hop dominate the

graph G. Therefore, γh (G) < |R|+ k. �

Theorem 3.6. For any connected graph G with no vertex of degree one and clique

number ω (G) , γh (G) ≤ n− ω (G) + 2.

Proof. Let G be a connected graph G with no vertex of degree one and clique

number ω (G). Let H be the maximal clique in the graph G. Then to hop dominate

the vertices in the maximal clique, we need to choose any two vertices of G outside

H. Then to hop dominate the remaining vertices outside the maximal clique we

need to choose at most n − ω (G) vertices. In general we need to choose at most

n− ω (G) + 2 vertices to hop dominate the graph G.

Therefore, γh (G) ≤ n− ω (G) + 2. �

Theorem 3.7. For any connected graph G with l (l > 2) cut vertices,γh (G) ≤ l.

Proof. Let G be a connected graph. Let U be the set of all cut vertices in the

graph G such that |U | = l and l > 2. Since, all the vertices in U are cut vertices of

G removal of U from the vertex set V of G results in l different components of G.

Hence each vertex in U is adjacent to at least one vertex in at least one component

of G. Therefore, vertices in U hop dominates all the vertices of G. Therefore, we

need to choose at most l vertices (since,|U | = l) to hop dominate the graph G.

Therefore, γh (G) ≤ |U | = l. �

Theorem 3.8. For the graph Kn � P2, γh (Kn � P2) = n.

Proof. Let G = Kn � P2. Since, P2 is attached to each vertex of Kn, eccentricity

of all the vertices of Kn is 3, eccentricity of all the pendent vertices is 5 and
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the eccentricity of all the support vertices is 4. Here, the eccentricities of the

vertices of Kn is less than the eccentricities of the vertices of P2. Therefore,

choosing all the vertices of Kn will hop dominate the graph Kn � P2. Therefore,

γh (Kn � P2) = n. �

4. Hop Domination Number of a Wounded Spider

Definition 4.1. A subdivision of an edge uv is obtained by replacing the edge

uv with the edges uw and vw with a new vertex w. A spider is a tree on 2n + 1

vertices obtained by subdividing each edge of a star. One or more (but not all) of

the edges from this subdivision exempted results a wounded spider.

Theorem 4.2. For any wounded spider K∗1,t, where t ≥ 2, γh
(
K∗1,t

)
= 2.

Proof. Consider the following wounded spider K∗1,t, where k edges are subdivided

and k < t.

Figure 4. A wounded spider K∗1,t

Let u be the central vertex. Referring the above graph we say that the vertices

v1, v2, v3, . . . . . . , vk are hop dominated by the vertex u. Take any one of the vertex

from the set of vertices {uk+1, uk+2, . . . . . . , ut} without loss of generality take that

vertex to be ut. Then ut hop dominates all other remaining vertices. Therefore

{u, ut} is the minimum hop dominating set of K∗1,t. Therefore γh
(
K∗1,t

)
= 2. �
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Theorem 4.3. For any connected graph G, γ2 (G) ≤ γh (G).

Proof. Let G be any connected graph G. Let D be the minimum distance 2

dominating set of G. Let D′ be the minimum hop dominating set of G. Every

vertex in D dominates every vertex in V D at a distance less than or equal to 2

but every vertex in D′ dominates every vertex in V −D′ at a distance exactly 2.

Then, D ⊆ D′. Hence, |D| ≤ |D′| which implies that γ2 (G) ≤ γh (G). �

5. Connected Hop Domination Number

Definition 5.1. A hop dominating set D of a graph G is said to be a connected

hop dominating set of G if the induced subgraph < D > is connected. The

cardinality of a minimum connected hop dominating set is called the connected

hop domination number of G and it is denoted by γch (G).

Example 5.2. Consider the following graph G:

Consider the minimum hop dominating set D = {c, e, f}.

The induced sub graph of D is not connected.

Figure 5. A graph G

Figure 6. Induced subgraph of D

Figure 7. Induced subgraph D1
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Now consider another minimum hop dominating set D1 = {a, e, f} . The induced

sub graph of D1 is is connected. Therefore, D1 = {a, e, f} is the minimum

connected hop dominating set of G. Therefore, γch (G) = 3.

Next we study the connected hop domination number for some standard graphs.

Theorem 5.3. For any complete graph Kn, γ
c
h (Kn) = n.

Proof. Let Kn be any complete graph. Since in a complete graph each and every

vertex is adjacent to the other n1 vertices so it is not easy to find a hop dominating

set unless all the vertices are included in the hop dominating set D. Since it is a

complete graph and all the vertices are included in the hop dominating set D the

induced subgraph of D is connected. Therefore, γch (Kn) = n. �

Theorem 5.4. For any complete bipartite graph Km,n, γ
c
h (Km,n) = 2.

Proof. Let Km,n be any complete bipartite graph with partite set V = V1 ∪ V2. In

the set V1 distance between any two vertices is 2. Therefore choosing one vertex

in the set V1 say v hop dominates the remaining m1 vertices. Similarly in the set

V2 distance between any two vertices is 2. Therefore choosing one vertex in the

set V2 say w hop dominates the remaining n1 vertices. Therefore, the minimum

hop dominating set of Km,n is D = {v, w}. Since it is a complete bipartite graph

the induced subgraph of D will be connected. Since D = {v, w} is the minimum

connected hop dominating set of Km,n. Therefore, γch (Km,n) = 2. �

Theorem 5.5. For any star graph K1,n, γ
c
h (K1,n) = 2.

Proof. Let K1,n be any star graph with n+1 vertices. Let the vertex set of K1,n be

V = {u, v1,v2, .., vn}. Here u is the only central vertex with eccentricity 1 and the

remaining n pendant vertices have eccentricity 2. Any one of the pendant vertices

say vi hop dominates the remaining n1 vertices. Since u is the only vertex with

eccentricity 1 it dominates itself. Therefore the minimum hop dominating set of

K1,n is D = {u, vi}. Since, it is a star graph the induced sub graph of D will

be connected. Therefore, D = {u, vi} D = u, viis the minimum connected hop

dominating set of K1,n. Therefore, γch (K1,n) = 2. �
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Theorem 5.6. For any wheel graph Wn, γ
c
h (Wn) = 3.

Proof. Let Wn be any wheel graph with n vertices. Let the vertex set of Wn be

V = {u, v1,v2, · · · , vn−1}. Here u is the only central vertex with eccentricity 1

and the remaining n1 vertices have eccentricity 2. Any one of the vertices having

eccentricity 2 say vi hop dominates the other vertices except the vertices adjacent

to it. Therefore to hop dominate the adjacent vertices of vi choose the antipodal

vertex say vj of vi. Since, u is the only central vertex with eccentricity 1 it

dominates itself. Therefore, the minimum hop dominating set of Wn is

D = {u, vi, vj}. Since, it is a wheel graph the induced sub graph of D will be

connected. Therefore, D = {u, vi, vj} is the minimum connected hop dominating

set of Wn. Therefore, γch (Wn) = 3. �

The following theorem states the existence of a connected hop dominating set

in an arbitrary graph.

Theorem 5.7. Let G = (V,E) be a connected graph. Let G1, G2, . . . , Gs(s ≥ 2) be

connected proper subgraphs of G with connected hop dominating sets D1, D2, . . . , Ds

respectively. If
s⋃

i=1

V (Gi) = V then there exists a connected hop dominating set D

of G such that D ⊆
s⋃

i=1

Di and |D| ≤
s∑

i=1

|Di|+ 2s.

Proof. We proceed the proof by induction on s ≥ 2. First we assume that s = 2.

By the assumption there exists x ∈ N [D1] and y ∈ N [D2] with xy ∈ E (G)

since G is connected. Thus by adding two vertices in v together with {x, y} to

D1

⋃
D2 we get a connected dominating set D of G with D ⊆ D1

⋃
D2 such that

|D| ≤ |D1| + |D2| + 2. Assume now that the result is true for s = 2, 3, · · · , k and

we prove the result for the case s = k+1. We construct a new graph with vertices

of Gi, 1 ≤ i ≤ k + 1. We say that Gi and Gj are adjacent if V (Gi) ∩ V (Gj) 6=

Φ or there exists u ∈ V (Gi) = N [Di] and v ∈ V (Gj) = N [Dj] v such that

uv ∈ E (G). It is obvious that κ is a connected graph and the fact that
k+1⋃
i=1

V (Gi).

By deleting a non-cut vertex of κ, say Gk+1, we get a new connected graph κ′ =

G

[
k+1⋃
i=1

V (Gi)− V (GK+1)

]
. By the induction hypothesis there exists a connected
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hop dominating set D′ of κ′ such that D′ ⊆
k⋃

i=1

Di and |D′| ≤
k∑

i=1

|Di|+ 2k. By

the same argument in the case s = 2, there exists a connected hop dominating

set D of κ with D ⊆ D′
⋃
Dk+1 ⊆

k⋃
i=1

Di

⋃
Dk+1 =

k+1⋃
i=1

Di which implies that

|D| ≤ |D′| + |Dk+1| + 2. Hence, |D| ≤
k∑

i=1

|Di|+ 2k + |Dk+1|+ 2. And so, |D| ≤
k+1∑
i=1

|Di|+ 2(k + 1) =
s∑

i=1

|Di|+2s. Thus it is true for all s = k+1 and it completes

the induction hypothesis. �

Corollary 5.8. In the theorem 5.7, if D1, D2, . . . , Ds are minimum connected hop

dominating sets of G1, G2, . . . , Gs, then γ
c
h (G) ≤

s∑
i=1

γch (Gi) + 2s.

Proof. Proof is immediate from the above theorem by taking D1, D2, . . . , Ds as

minimum connected hop dominating sets of G1, G2, . . . , Gs. �

Corollary 5.9. In the theorem 5.7, if V (G)−
s⋃

i=1

V (Gi) = X, then there exists a

connected hop dominating set D of G such that D ⊆
s⋃

i=1

Di and D ⊆
s∑

i=1

|Di| +

2s+ |X|.

Proof. Let the components of G [X] be X1, X2, . . . , Xr, 1 ≤ r ≤ |X|. Then for

each Xj; 1 ≤ j ≤ r, there exists uj ∈ Xj and vj ∈ V (Gj) such that uj is adjacent

to vj in Gj. Denote this existence as Xj is adjacent to Gj. Joining Xj to one

of its adjacent sub graphs say Gj to get a new graph G
′
j and obtain a connected

hop dominating set of D
′
j of G

′
j by adding at most |Xj| vertices to the connected

dominating set Dj of Gj. By the previous theorem if |Xj| ≥ 2 then ignore at least

one non cut vertex of Xj at the time of addition of vertices to the hop dominating

set of Gj. By repeating the above process for all Xj; 1 ≤ j ≤ r, we obtain a

subgraph of G denoted as G
′
i, 1 ≤ i ≤ s. Then V (G) =

s⋃
i=1

V
(
G

′
j

)
=

s⋃
i=1

N
[
G

′
j

]
and G [Gi

,] is connected. Also we have
s∑

i=1

|D′

i
| ≤

s∑
i=1

|Di|+
r∑

j=1

|Xj| =
s∑

i=1

|Di|+ |X|.

It follows from the above theorem that G has a connected dominating set D with

D ⊆
s⋃

i=1

D
′

i
and so |D| ≤

k∑
i=1

|D′

i
|+ 2s =

s∑
i=1

|Di|+ 2s + |X|. It completes the

proof. �
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6. Conclusion

In this paper, we characterized graphs for which γh (G) = 2 by constructing

new graphs from the cycles C3, C4, C5, C6 by adding pendent vertices. The bounds

for the hop domination number based on diameter, girth and maximum degree

were found. The hop domination number of a wounded spider was determined.

The relation between the hop domination number and the distance-2 domination

number was discussed. The connected hop domination number of special graphs

like Corona graphs, splitting graphs and subdivided graphs can be studied. This

study can be extended as hop domination based central structures in graphs.
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