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Abstract. As the atom-bond connectivity index kept expanding, the

multiplicative atom-bond connectivity indices were introduced to measure the

stability of alkanes and strain energy of cycloalkanes. Let

ABCΠ(G) =
∏

uv∈E(G)

√
nu+nv−2

nunv
denote the first multiplicative atom-bond

connectivity index (ABCΠ) of a graph G, in which nu represents the number

of vertices which are closer to vertex u than vertex v. Similarly, nv is defined

in this way. In this paper, we study the basic mathematical characters of the

second multiplicative atom-bond connectivity index.

Key words: theoretical chemistry, molecular graph, second multiplicative

atom-bond connectivity index
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1. Introduction

As the improvement of the experimental skills as well as the experimental

conditions, compounds materials, and the drugs have been emerging in the

laboratory every year. These new material needs the experimental methods to

detect their physical, chemical, material or pharmacological properties, which

greatly increases the cost of the test and workload to analyze new compounds.

Indeed, this work needs put plenty of experimental instruments and reagents,

so it has gradually become an important expense. On the other hand, the
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experimental results of the early years show that there is closely relationship

between chemical structure of compounds and their related characteristics. The

theoretical chemistry provides a new way of thinking and help researchers

indirectly acquire the properties of compounds by means of mathematical

deduction and calculation. The basic idea is to represent a graph for each

molecular structure, and topological index is defined on the graph. The

characteristics of molecular structure are determined by calculation of the

corresponding topological index. The laws are not subject to the experimental

conditions and have been welcomed by the less developed countries and regions.

At present, in Iran, Pakistan and India, a large number of scholars use

mathematical methods to study the properties of compounds. For the

contributions on the topological index computation and its engineering

applications one can refer to Balaban [1], Buscema et al. [2], Gao et al. [3–5],

Bodlaj and Batagelj [6], Lokesha et al. [7], Khakpoor and Keshe [8], and

Ivanciuc [9].

This paper only covers simple (molecular) graphs. Let G = (V (G), E(G)) be a

connected graph with vertex set V (G) and edge set E(G) respectively.

The degree d(v) of a vertex v is the number of edges incident to v. A topological

index is a function f : G → R which maps each graph to a real number.

In around recent 40 years, motivated by the chemical, material and

pharmaceutical engineering applications, lots of degree-based, distance-based and

spectrum-based indices were introduced, such as Wiener index, graph energy,

PI index, Randić energy, Zagreb index, resolvent energy, harmonic index,

signless Laplacian estrada index sum connectivity index, etc. In addition, some

advancements on distance-based, degree-based and spectrum-based indices of

special molecular structures are contributed, and they can be in reference to

Sardar et al. [10], Gao and Wang [11, 12], Abdo et al. [13], Hosamani et al. [14],

Carballosa et al. [15], Hernandez-Gomez et al. [16], Bermudo et al. [17], and

Guirao and de Bustos [18].
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The atom-bond connectivity index (in short, the ABC index) was proposed by

Estrada and Torres [19] and it is a graph invariant suitable for stability of alkanes

and the strain energy of cycloalkanes. As a graph G, the atom-bond connectivity

index can be formulated as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

For this famous index, it has been widely studied by researchers and an amount

of conclusions have been obtained. The first and second maximum values of the

atom-bond connectivity index of tetracyclic graphs with n vertex were calculated

by Dehghan-Zadeh et al. [20]. Ashrafi and Dehghan-Zadeh [21] studied the first and

second maximum values of the ABC index of cactus graphs with order n. Goubko

et al. [22] presented a counterexample to the main result of the previous conclusion.

Dehghan-Zadeh and Ashrafi [23] determined the atom-bond connectivity index of

quasi-tree graphs. Besides, an efficient computation trick of trees with the smallest

atom-bond connectivity index are raised by Dimitrov [24].

As the multiplicative version of the ABC index, the first multiplicative

atom-bond connectivity index

ABCΠ(G) =
∏

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
,

was introduced by Kulli [27]. Inspired by this multiplicative index, Zhong et al. [28]

characterized extremal graphs with respect to the first multiplicative atom-bond

connectivity index. In the same way, the multiplicative atom-bond connectivity

index of a catacondensed hexagonal system was determined as well.

The second multiplication ABC index is also introduced by Kulli [27] which is

formulated as follows:

ABC2Π(G) =
∏

uv∈E(G)

√
nu + nv − 2

nunv

,

where

nu = |{x ∈ V (G)|d(u, x) < d(v, x)}|

and

nv = |{x ∈ V (G)|d(u, x) < d(v, x)}|.
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Let Kn, Sn and Pn be the complete graph, star and path on n vertices,

respectively. And let Kn,m also be the complete bipartite graph on n + m

vertices. A tree is said to be star-like if exactly one of its vertices has degree

greater than two. By S(2r, s), r, s ≥ 1, we denote a star-like tree with diameter

less than or equal to 4, which has a vertex v1 of degree r + s and

S(2r, s)− {v1} = p2 ∪ · · · ∪ p2︸ ︷︷ ︸
r

∪ p1 ∪ · · · ∪ p1︸ ︷︷ ︸
s

.

One can prove that, this tree has 2r+s+1 = n vertices. We say that the star-like

tree S(2r, s) has r + s branches, where the lengths of them are 2, · · · , 2,︸ ︷︷ ︸
r

1, · · · , 1︸ ︷︷ ︸
s

respectively. For n,m ≥ 2, denoted by Sm,n which means a tree with n + m

vertices formed by adding a new edge connecting the centers of the stars Sn and

Sm. Finally, if and only if they are not adjacent in G, the complement G of a

simple graph G is a simple graph with vertex set V and two vertices are close to

each other in G.

Although there are abundant known result on ABC index, the theoretical

results on the second multiplicative atom-bond connectivity index are still

limited. In the article, we demonstrate several basic mathematical features of the

second multiplicative atom-bond connectivity index.

2. Main results and proofs

The aim of this part is to demonstrate the main results and their proofs in

details.

Theorem 1. Let G be a connected graph of order n with m edges and p pendent

vertices, then

ABC2Π(G) < (

√
n− 2

n− 1
)p.

Proof. Clearly, we can assume that n ≥ 3. For each pendent edge uv of graph G

we have nu = 1 and nv = n − 1. For each non-pendent edge uv of graph G we

have
nu + nv − 2

nunv

< 1. So

ABC2Π(G) =
∏

uv∈E(G),d(u)=1

√
nu + nv − 2

nunv
×

∏
uv∈E(G),d(u),d(v)6=1

√
nu + nv − 2

nunv
< (

√
n− 2

n− 1
)p.
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A simple calculation shows that the Diophantine equation x + y − 2 = xy does

not have any integer solution. Then the upper bound does not happen. �

Theorem 2. Let T a tree of order n > 2 with p pendent vertices. Then

ABC2Π(T ) ≤
(√

n− 2

n− 1

)p(√
2

2

)n−p−1

with equality if and only if T ∼= K1,n−1 or T ∼= S(2r, s) where n = 2r + s + 1.

Proof. For any edge of trees we have nu + nv = n. Now we assume, the tree T

have p pendent vertex, then there exists p edge that nu = 1 and nv = n− 1. For

each non-pendent edge uv of tree T , 2 ≤ nu, nv ≤ n− 2 and then nunv ≥ 2(n− 2).

This implies that
√
nunv ≥

√
2(n− 2) and so

1
√
nunv

≤ 1√
2(n− 2)

.

Hence,

ABC2Π(T ) =
∏

uv∈E(T ),d(u)=1

√
n− 2

nunv

×
∏

uv∈E(T ),d(u),d(v)6=1

√
n− 2

nunv

≤
(√

n− 2

n− 1

)p(√
n− 2

2(n− 2)

)n−p−1

. (1)

Suppose now that equality holds in (1), we can consider the following cases:

Case (a): p = n− 1. From equality in (1), we must have nu = n− 1 and nv = 1

for each edge uv ∈ E(T ) and nu ≥ nv, that is, each edge uv must be pendent.

Since T is a tree, T ∼= K1,n−1.

Case (b): p < n − 1. In this case the diameter of T is strictly greater than 2.

So there is a neighbor of a pendent vertex, say u, adjacent to some non-pendent

vertex k. Since nu = n − 2 and nv = 2 for each non-pendent edge uv ∈ E(T ),

nu ≥ nv, we conclude that the degree of each neighbor of a pendent vertex is two

and each vertex is adjacent to vertex k. In addition, also the remaining pendent

vertices are adjacent to vertex k. Hence T is isomorphic to T ∼= S(2r, s) where

n = 2r + s + 1.

In contrast, it is easy to see that the equality in (1) holds for star K1,n−1 or

S(2r, s) where n = 2r + s + 1. �
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Theorem 3. Let G be a graph on n > 2 vertices, m edges and p pendent vertices.

Then

ABC2Π(G) ≤
(√

n− 2

n− 1

)p

with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

Proof. For each pendant edge uv, nu = 1, nv = n−1 and for the others nu, nv ≥ 1.

This implies that

ABC2Π(G) =
∏

uv∈E(G)

√
nu + nv − 2

nunv

=
∏

uv∈E(G),d(u)=1

√
nu + nv − 2

nunv

×
∏

uv∈E(G),d(u),d(v)6=1

√
nu + nv − 2

nunv

=

(√
n− 2

n− 1

)p

×
∏

uv∈E(G),d(u),d(v)6=1

√
nu + nv − 2

nunv

≤
(√

n− 2

n− 1

)p

.

For equality we should consider two cases:

Case(a) p = 0, in this case for all edges e = uv, nu = nv = 1 and this implies

G ∼= Kn.

Case(b) p = m, in this case all edges are pendant and so G ∼= K1,n−1. �

Theorem 4. Let T be a tree of order n > 2 with p pendent vertices. Then

ABC2Π(T ) ≥
(√

n− 2

n− 1

)p(
2
√
n− 2

n

)n−p−1

with equality if and only if T ∼= K1,n−1 or T ∼= Sn
2
,n
2
.

Proof. It is clear that in a tree for every edge uv, nu + nv = n and hence

ABC2Π(T ) =
∏

uv∈E(G)

√
n− 2

nunv

.

Now we assume that T have p pendent vertices, then there exist p edges such

as e = uv where nu = 1 and nv = n − 1. Also, for each non-pendant edge uv,

nunv ≤
n2

4
and so
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ABC2Π(T ) =
∏

uv∈E(G),d(u)=1

√
n− 2

nunv

×
∏

uv∈E(G),d(u),d(v)6=1

√
n− 2

nunv

=

(√
n− 2

n− 1

)p

×
∏

uv∈E(G),d(u),d(v) 6=1

√
n− 2

nunv

≥
(√

n− 2

n− 1

)p(
2
√
n− 2

n

)n−p−1

.

Let the equality of the formula above holds, we can consider two following cases:

Case(a) p = n − 1, in this case all edges are pendant. Therefore T ∼= K1,n−1 and

so ABC2Π(T ) =

(√
n− 2

n− 1

)n−1

.

Case(b) p < n − 1, in this case equality holds if and only if for all non-pendant

edges, nu = nv = n
2

and this completes the proof. �

Theorem 5. Let G and G are connected graphs on n vertices with p and p pendent

vertices, respectively. Then

ABC2Π(G) + ABC2Π(G) <

(√
n− 2

n− 1

)p

+

(√
n− 2

n− 1

)p

.

Proof. The result is obtained directly from Theorem 1. �
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