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Abstract. In this paper we prove that the two star K1,g∧K1,h is mean cordial

graph if and only if |2g − h| ≤ 4 for g ≤ h and g = 1, 2, 3, · · · .
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1. Introduction

We begin with simple, finite, connected and undirected graph

G = (V (G), E(G)) with order p and size q. The members of V(G) and E(G) are

commonly termed as graph elements, while |V (G)| and |E(G)| denotes number of

vertices and edges in graph G respectively.

In 1987, Cahit [1] have introduced cordial labeling. Let f be a function from

the vertices of G to {0, 1} and for each edge xy assigns the label |f(x)− f(y)|,

call f a cordial labeling of G, if the number of vertices labeled 0 and the number

of vertices labeled 1 differ by at most 1 and the number of edges labeled 0 and

the number of edges labeled 1 differ by atmost 1.

Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram introduce a new

notion called mean cordial labeling and they investigate the mean cordial

labeling behavior of some standard graphs. The symbol dxe stands for smallest

integer greater than or equal to x.
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Definition 1.1. Let f be a function from V (G) to {0, 1, 2} for each edge uv of G,

assign the label
⌈
f(u)+f(v)

2

⌉
f is called a mean cordial labeling of G if

|Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}, where Vf (x) denotes

the number of vertices and ef (x) denotes the number of edges labeled with

x(x = 0, 1, 2) respectively. A graph with a mean cordial labeling is called mean

cordial graph.

Definition 1.2. A wedge is defined as an edge connecting two components of a

graph, denoted as ∧, ω(G∧) < ω(G).

Theorem 1.1. The two star K1,g ∧ K1,h is mean cordial graph if and only if

|2g − h| ≤ 4 for g ≤ h and g = 1, 2, 3, · · · .

proof Let G=K1,g ∧K1,h.

V (G) be the node set of G and E(G) be the link set of G, then G is given by,

V (G) = {s, t} ∪ {sθ : 1 ≤ θ ≤ g} ∪ {tθ : 1 ≤ θ ≤ h} and

E(G) = {ssθ : 1 ≤ θ ≤ g} ∪ {ttθ : 1 ≤ θ ≤ h} ∪ {sθtθ for any θ}.

Then, G has g + h+ 2 nodes and g + h+ 1 links.

To prove that G is a mean cordial graph for all g ≥ 1, h ≥ 1

f : V (G)→ {0, 1, 2} and f ∗ : E(G)→ {0, 1, 2}.

We shall consider the following cases.

Case(i): h = 2g

Consider the graph G = K1,g ∧K1,h , where g ≤ h.

The required node labeling of G is defined as follows: f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(t2θ−1) = 1 for 1 ≤ θ ≤ h
2

f(t2θ) = 2 for 1 ≤ θ ≤ h
2

The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤ h
2
; tt2θ is 2 for 1 ≤ θ ≤ h

2
.

The wedge labeling of sθtθ is 1 for any θ.

Then, vf (0) = vf (1) = g + 1,vf (2) = g and ef (0) = ef (2) = g,ef (1) = g + 1.

Hence, |Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}.

Hence, G is mean cordial graph if h = 2g.
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Example: Let g = 10 then we get h = 20 ,i.e K1,10 ∧K1,20.

Figure 1. K1,10 ∧K1,20

Case(ii): h = 2g + 1

Consider the graph G = K1,g ∧K1,h , where g ≤ h.

The required node labeling of G is defined as follows:

f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
f(tθ) = 2

The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 1 for any θ.

Then, vf (0) = vf (1) = vf (2) = g + 1 and ef (0) = g,ef (1) = ef (2) = g + 1.

Hence, |Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}.

Hence, G is mean cordial graph if h = 2g + 1.

Example: Let g = 10 then we get h = 21 ,i.e K1,10 ∧K1,21.

Figure 2. K1,10 ∧K1,21
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Case(iii): h = 2g + 2

Consider the graph G = K1,g ∧K1,h , where g ≤ h.

The required node labeling of G is defined as follows:

f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(ttheta) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤ h
2
− 1

f(t2θ) = 2 for 1 ≤ θ ≤ h
2
.

The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤ h
2
− 1; tt2θ is 2 for 1 ≤ θ ≤ h

2
.

The wedge labeling of sθtθ is 0 for any θ.

Then, vf (0) = g + 2, vf (1) = vf (2) = g + 1 and ef (0) = ef (1) = ef (2) = g + 1.

Hence, |Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}.

Hence, G is mean cordial graph if h = 2g + 2.

Example: Let g = 10 then we get h = 22 ,i.e K1,10 ∧K1,22.

Figure 3. K1,10 ∧K1,22

Case(iv): h = 2g + 3

Consider the graph G = K1,g ∧K1,h , where g ≤ h.

The required node labeling of G is defined as follows: f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
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The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0 for any θ

Then, vf (0) = vf (1) = g + 2, vf (2) = g + 1 and ef (0) = ef (2) = g + 1,

ef (1) = g + 2.

Hence, |Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}.

Hence, G is mean cordial graph if h = 2g + 3.

Example: Let g = 10 then we get h = 23 ,i.e K1,10 ∧K1,23.

Figure 4. K1,10 ∧K1,23

Case(v): h = 2g + 4

Consider the graph G = K1,g ∧K1,h , where g ≤ h.

The required node labeling of G is defined as follows:

f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(ttheta) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤ h
2
− 1

f(t2θ) = 2 for 1 ≤ θ ≤ h
2

The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤ h
2
− 1; tt2θ is 2 for 1 ≤ θ ≤ h

2
.

The wedge labeling of sθtθ is 0 for any θ.

Then, vf (0) = vf (1) = vf (2) = g + 2 and ef (1) = ef (2) = g + 2, ef (0) = g + 1.

Hence, |Vf (i)− Vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, 2}.

Hence, G is mean cordial graph if h = 2g + 4.
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Example: Let g = 10 then we get h = 24 ,i.e K1,10 ∧K1,24.

Figure 5. K1,10 ∧K1,24

Hence, G is mean cordial graph |2g − h| ≤ 4 for g ≤ h and g = 1, 2, 3, · · ·

coveserly, we fix the 0 in sθ where 1 ≤ θ ≤ g, some 0, 1 and 2 in tθ, where

1 ≤ θ ≤ h, then only we get vertices less than or equal to 1.

Suppose, h = 2g + 5, consider the graph G = K1,g ∧K1,h, where g ≤ h

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 0; f(t) = 0

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 1 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.

Then, vf (0) = g + 3,vf (1) = g + 2, vf (2) = g + 2 and ef (0) = g + 2, ef (2) = 0,

ef (1) = 2g + 4.

Hence, |Vf (i)− Vf (j)| ≤ 1 but |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 1; f(t) = 1
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f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
The required link labeling of G is defined as follows:

ssθ is 1 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.

Then, vf (0) = g + 1,vf (2) = g + 2, vf (1) = g + 4 and ef (0) = 1,ef (1) = 2g + 3,

ef (2) = g + 2.

Hence, |Vf (i)− Vf (j)| > 1 and |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 2; f(t) = 2

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
The required link labeling of G is defined as follows:

ssθ is 1 for 1 ≤ θ ≤ g; tt2θ−1 is 2 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.

Then, vf (0) = g + 1, vf (1) = g + 2, vf (2) = g + 4 and ef (0) = 1,ef (1) = g + 1,

ef (2) = 2g + 4.

Hence, |Vf (i)− Vf (j)| > 1 and |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 0; f(t) = 1

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
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The required link labeling of G is defined as follows:

ssθ is 1 for 1 ≤ θ ≤ g; tt2θ−1 is 1 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.

Then, vf (0) = vf (2) = g + 2, vf (1) = g + 3 and ef (0) = g + 1,ef (1) = g + 3,

ef (2) = g + 2.

Hence, |Vf (i)− Vf (j)| ≤ 1 but |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 0; f(t) = 2

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
The required link labeling of G is defined as follows:

ssθ is 0 for 1 ≤ θ ≤ g; tt2θ−1 is 2 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.

Then, vf (0) = vf (1) = g + 2, vf (2) = g + 3 and ef (0) = g + 1,ef (1) = g + 3,

ef (2) = 2g + 4.

Hence, |Vf (i)− Vf (j)| ≤ 1 but |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

f(s) = 1; f(t) = 2

f(sθ) = 0 for 1 ≤ θ ≤ g

f(tθ) = 0

f(t2θ−1) = 1 for 1 ≤ θ ≤
⌊
h
2

⌋
f(t2θ) = 2 for 1 ≤ θ ≤

⌊
h
2

⌋
The required link labeling of G is defined as follows:

ssθ is 1 for 1 ≤ θ ≤ g; tt2θ−1 is 2 for 1 ≤ θ ≤
⌊
h
2

⌋
; tt2θ is 2 for 1 ≤ θ ≤

⌊
h
2

⌋
.

The wedge labeling of sθtθ is 0.
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Then, vf (2) = vf (1) = g + 3, vf (0) = g + 1 and ef (0) = 1,ef (1) = g + 1,

ef (2) = 2g + 4.

Hence, |Vf (i)− Vf (j)| > 1 and |ef (i)− ef (j)| > 1, i, j ∈ {0, 1, 2}, which is

contradiction.

Hence, G is not mean cordial graph if h = 2g + 5.

Hence, the two star K1,g ∧K1,h is mean cordial graph if and only if |2g − h| ≤ 4

for g ≤ h and g = 1, 2, 3, · · · ,.
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