
Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in
ISSN: 2456-8686

O
ri

g
in

a
l 

R
e

se
a

rc
h

 A
rt

ic
le

SACRED HEART RESEARCH PUBLICATIONS

J. Comp.Matha. Vol.3(1), (2019), ISSN: 2456–8686

Interval Oscillation Criteria for Self-adjoint Alpha-Fractional Matrix

Differential Systems with Damping

1V. Sadhasivam and 2N. Nagajothi

Received on 15 February 2019, Accepted on 02 April 2019

Abstract. In this paper, we are concerned with the oscillation criteria for

self-adjoint alpha-fractional matrix differential system with damping term. By

using the generalized Riccati technique and the averaging technique, some new

oscillation criteria are obtained.
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1. Introduction

Fractional calculus is a branch of mathematics, which is as old as calculus but

the applications are rather recent. It deals with differentiation and integration of

arbitrary orders. It merges and generalizes the ideas of integer-order differentiation

and n-fold integration whereas the fractional order models capture phenomena and

properties that integer order neglect. The fractional order differential equations

have been used to model several physical phenomena emerging in various Physical

sciences, Biological, Ecological, Economics and Financial mathematics. See, for

example [1,8,10,11,14,20,21,28-30,35] and the references cited therein.

The R-L and Caputo fractional derivatives are based on integral expressions

and gamma functions which are nonlocal. In 2014, Khalil et al [19], introduced a

new fractional derivative called the conformable derivative, using a limit definition
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analogous to that of standard derivative. The conformable derivative of Khalil

was soon generalized by Katugampola which is reffered as katugampola fractional

derivative or α-fractional derivative. See [2-4,7,17,18] and the references cited

therein.

For the past few decades, the problem of oscillation and nonoscillation of

solutions of matrix differential equations is one of the active area of research in

the qualitative theory of matrix differential equations. See [5,6,9,12,13,15,16,

22-27,31-34].

An important tool in the study of oscillatory behavior of solutions for the matrix

systems and corresponding the scalar analogue is the averaging technique which

goes back as far as the classical properties of Wintner [32] and Hartman [13] giving

sufficient oscillation conditions for those equations. The results of Wintner was

improved by Kamenev [16], and further extensions of Kamenev’s criterion have

been obtained by Philos [27] and for the corresponding matrix system by Erbe,

Kong and Ruan [12], Meng, Wang and Zhang [25], Kumari and Umamaheswaram

[23] and Wang [31].

To the best of the our knowledge, there exists no literature and the oscillation

of α- fractional matrix differential systems. Motivated by this gap, we proposed

to initiate the following α- fractional matrix differential system of the form

Dα (A(t)DαX(t)) + r(t)A(t)DαX(t) +B(t)X(t) = 0, t ≥ t0, (1)

where A(t), B(t), X(t) are n× n real continuous matrix functions with A(t), B(t)

symmetric and A(t) positive definite for [t0,∞) (A(t) > 0, t ≥ t0) ,

r(t) ∈ C(I = [t0,∞),R+).

A solution of the system (1) is said to be nontrivial if det X(t) 6= 0 for atleast

one t ∈ [t0,∞), and a nontrivial solution X(t) of (1) is said to be prepared or

self-conjugate if

X∗(t)A(t)DαX(t)−DαX∗(t)A(t)X(t) = 0, t ≥ t0,
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where for any matrix A, the transpose of A is denoted by A∗. A prepared

solution X(t) of the system (1) is called oscillatory on [t0,∞) if its determinant

vanishes somewhere in [T,∞) for each T ≥ t0, otherwise, it is called

nonoscillatory. Finally, the system (1) is called oscillatory on [t0,∞) if every

prepared solution is oscillatory.

However, from the Sturm separation Theorem, we see that oscillation is only an

interval property, (i.e) if there exists a sequence of subintervals [ai, bi] of [t0,∞),

as ai → ∞, such that for each i, there exists a solution of equation (1) that has

atleast two zeros in [ai, bi], then every solution of equation (1) is oscillatory, no

matter how ”bad” equation (1) is on the remaining parts of [t0,∞).

In this paper, by using generalized Riccati technique and the averaging technique

and by considering the function H(t, s)k(s) which may not have a nonpositive

partial derivative on D0 = {(t, s) : t > s ≥ t0} with respect to the second variable,

we obtain some new general oscillation criteria for the system (1), that is, criteria

given by the behavior of (1) (or of A(t) and B(t)) only on a sequence of subintervals

of [t0,∞). By choosing appropriate functions H, k, ρ, we present a series of explicit

oscillation criteria.

Hereafter we denote the trace of n × n matrix A by tr(A). Further, En is the

n × n identity matrix, and the eigenvalues of the n × n symmetric matrix A (an

increasing order) are

λ
min

[A] = λn[A] ≤ · · · ≤ λ
max

[A].

Define D0 = {(t, s) : t > s ≥ t0}, D = {(t, s) : t ≥ s ≥ t0}.

2. Preliminaries

In this section, we give some basic definitions of the katugampola α- fractional

derivatives, integrals and lemmas which are useful throughout this paper.

Definition 2.1. [17] Let y : [0,∞)→ R and t > 0. Then the fractional derivative

of y of order α is given by

Dαy(t) := lim
ε→0

y(teεt
−α

)− y(t)

ε
for t > 0,



J.Comp.Matha. Vol.03(01),(2019), 52-63 V. Sadhasivam et al. 55

α ∈ (0, 1]. If y is α- differentiable in some (0, a), a > 0, and limt→0+ D
αy(t) exists,

then we define

Dαy(0) := lim
t→0+

Dαy(t).

The α-fractional derivative satisfies the following properties.

Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then

(p1) Dα(tn) = ntn−α for all n ∈ R.

(p2) Dα(c) = 0 for all constant functions, f(t) = c.

(p3) Dα(fg) = fDα(g) + gDα(f).

(p4) Dα

(
f

g

)
=
gDα(f)− fDα(g)

g2
.

(p5) Dα(f ◦ g)(t) = Dαf(g(t))Dα(g)(t).

(p6) If f is differentiable, then Dα(f)(t) = t1−α
df(t)

dt
.

Definition 2.2. [17] Let a ≥ 0 and t ≥ a. Also, let y be a function defined on

(a, t] and α ∈ R. Then, the α- fractional integral of y is given by

Iαa y(t) :=

∫ t

a

y(x)

x1−α
dx

if the Riemann improper integral exists.

Remark 1. Throughout the paper, we use the following notation. Further, if

X(t) = (Xi,j(t))n×n then

DαX(t) = (DαXi,j(t))n×n

where

DαXi,j(t) := lim
ε→0

Xi,j(te
εt−α

)−Xi,j(t)

ε
.

Also, if each Xi,j(t) is differentiable, then

DαXi,j(t) = t1−αX ′i,j(t)

and hence

DαX(t) = t1−αX ′(t).
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3. Main Results

In this section, we study oscillatory behavior of solutions of the α-fractional

matrix differential system (1).

Theorem 3.1. Suppose that the functions H ∈ C(D,R), h1, h2 ∈ C(D0,R) and

k, ρ ∈ Cα ([t0,∞), (0,∞)) satisfy the following conditions:

(H1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;

(H2)
∂(H(t, s)k(t))

∂t
−
(
r(t)tα−1 − ρ′(t)

ρ(t)

)
H(t, s)k(t) = h1(t, s) for all (t, s) ∈ D0;

(H3)
∂(H(t, s)k(s))

∂s
−
(
r(s)sα−1 − ρ′(s)

ρ(s)

)
H(t, s)k(s)=−h2(t, s) for all (t, s) ∈ D0.

Assume also that for each sufficiently large T0 ≥ t0, there exist a, b, c ∈ R with

T0 ≤ a < c < b such that

1

H(c, a)
λn

 c∫
a

{
H(s, a)k(s)sα−1ρ(s)B(s)− 1

4

h21(s, a)A(s)ρ(s)

H(s, a)k(s)sα−1

}
ds

+

1

H(b, c)
λ1

 b∫
c

{
H(b, s)k(s)sα−1ρ(s)B(s)− 1

4

h22(b, s)A(s)ρ(s)

H(b, s)k(s)sα−1

}
ds

 > 0. (2)

Then the system (1) is oscillatory.

Proof. Assume that there exists a prepared solution X(t) of the system (1) which

is not oscillatory. Without loss of generality, we may assume that det X(t) 6= 0

for t ≥ t0. Define

W (t) = ρ(t)A(t)DαX(t)X−1(t) for t ≥ t0. (3)

By α-differentiating the matrix (3) and making use of (1) we find thatW (t) satisfies

Riccati equation for t ∈ [t0,∞);

DαW (t) =
Dαρ(t)

ρ(t)
W (t)− r(t)W (t)− ρ(t)B(t)− 1

ρ(t)
W (t)A−1(t)W (t).

Multiplying by tα−1 on both sides and apply (p6), we get

tα−1ρ(t)B(t)=−W ′(t)−
(
r(t)tα−1− ρ′(t)

ρ(t)

)
W (t)− tα−1 1

ρ(t)
W(t)A−1(t)W (t). (4)

On multiplying (4) by H(t, s)k(s) and integrating with respect to s from c to t for

t ∈ [c, b), we obtain
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∫ t

c

H(t, s)k(s)sα−1ρ(s)B(s)ds

= −
∫ t

c

H(t, s)k(s)W ′(s)ds−
∫ t

c

H(t, s)k(s)

(
r(s)sα−1 − ρ′(s)

ρ(s)

)
W (s)ds

−
∫ t

c

H(t, s)k(s)sα−1
1

ρ(s)
W (s)A−1(s)W (s)ds.

= H(t, c)k(c)W (c)−
∫ t

c

[
−∂(H(t, s)k(s))

∂s
+

(
r(s)sα−1 − ρ′(s)

ρ(s)

)
H(t, s)k(s)

]
W (s)ds

−
∫ t

c
H(t, s)k(s)sα−1

1

ρ(s)
W (s)A−1(s)W (s)ds.

= H(t, c)k(c)W (c)−
∫ t

c
h2(t, s)W (s)ds−

∫ t

c
H(t, s)k(s)sα−1

1

ρ(s)
W (s)A−1(s)W (s)ds.

Since A(t) > 0, we can let

V (t) =

[
1

ρ(t)
A−1(t)

] 1
2

.

Substituting V (t) into the above equation, we obtain∫ t

c

H(t, s)k(s)sα−1ρ(s)B(s)ds

= H(t, c)k(c)W (c)−
∫ t

c

h2(t, s)V
−1(s)V (s)W (s)V −1(s)V (s)ds

−
∫ t

c

H(t, s)k(s)sα−1V −1(s) [V (s)W (s)V (s)] [V (s)W (s)V (s)]V −1(s)ds.

= H(t, c)k(c)W (c) +
1

4

∫ t

c

h22(t, s)A(s)ρ(s)

H(t, s)k(s)sα−1
ds

−
∫ t

c
V −1(s)

|H(t, s)k(s)sα−1|
1

2 [V (s)W (s)V (s)] +
1

2

h2(t, s)En

|H(t, s)k(s)sα−1|
1

2


2

V −1(s)ds.

Thus we get∫ t

c

{
H(t, s)k(s)sα−1ρ(s)B(s)− 1

4

h22(t, s)A(s)ρ(s)

H(t, s)k(s)sα−1

}
ds ≤ H(t, c)k(c)W (c).

Thus

λ1

[∫ t

c

{
H(t, s)k(s)sα−1ρ(s)B(s)− 1

4

h22(t, s)A(s)ρ(s)

H(t, s)k(s)sα−1

}
ds

]
≤ λ1 [H(t, c)k(c)W (c)] . (5)
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Letting t→ b− in (5) and dividing both sides by H(b, c), we obtain

1

H(b, c)
λ1

[∫ b

c

{
H(b, s)k(s)sα−1ρ(s)B(s)− 1

4

h22(b, s)A(s)ρ(s)

H(b, s)k(s)sα−1

}
ds

]
≤λ1 [k(c)W (c)] . (6)

Similarly to the above proof, multiplying (4), with t replaced by s, by H(s, t)k(s)

and integrating with respect to s from t to c for t ∈ (a, c], we obtain∫ c

t

H(s, t)k(s)sα−1ρ(s)B(s)ds

= −
∫ c

t

H(s, t)k(s)W ′(s)ds−
∫ c

t

H(s, t)k(s)

(
r(s)sα−1 − ρ′(s)

ρ(s)

)
W (s)ds

−
∫ c

t

H(s, t)k(s)sα−1
1

ρ(s)
W (s)A−1(s)W (s)ds.

= −H(c, t)k(c)W (c)−
∫ c

t

[
−∂(H(s, t)k(s))

∂s
+

(
r(s)sα−1 − ρ′(s)

ρ(s)

)
H(s, t)k(s)

]
W (s)ds

−
∫ c

t
H(s, t)k(s)sα−1

1

ρ(s)
W (s)A−1(s)W (s)ds.

= −H(c, t)k(c)W (c)−
∫ c

t
h1(s, t)W (s)ds−

∫ c

t
H(s, t)k(s)sα−1

1

ρ(s)
W (s)A−1(s)W (s)ds.

Since A(t) > 0, we can again let

V (t) =

[
1

ρ(t)
A−1(t)

]1

2
.

Substituting V (t) into the above equation, we get∫ c

t

H(s, t)k(s)sα−1ρ(s)B(s)ds

= −H(c, t)k(c)W (c) +

∫ c

t

h1(s, t)V
−1(s)V (s)W (s)V −1(s)V (s)ds

−
∫ c

t

H(s, t)k(s)sα−1V −1(s) [V (s)W (s)V (s)] [V (s)W (s)V (s)]V −1(s)ds.

= −H(c, t)k(c)W (c) +
1

4

∫ c

t

h21(s, t)A(s)ρ(s)

H(s, t)k(s)sα−1
ds

−
∫ c

t
V −1(s)

|H(s, t)k(s)sα−1|
1

2 [V (s)W (s)V (s)] +
1

2

h1(s, t)En

|H(t, s)k(s)sα−1|
1
2


2

V −1(s)ds.
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Thus we obtain∫ c

t

{
H(s, t)k(s)sα−1ρ(s)B(s)− 1

4

h21(s, t)A(s)ρ(s)

H(s, t)k(s)sα−1

}
ds ≤ −H(c, t)k(c)W (c).

Thus

λn

[∫ c

t

{
H(s, t)k(s)sα−1ρ(s)B(s)− 1

4

h21(s, t)A(s)ρ(s)

H(s, t)k(s)sα−1

}
ds

]
≤ −λn [H(t, c)k(c)W (c)]

= −λ1 [H(t, c)k(c)W (c)] ,

where t ∈ (a, c]. Letting t → a+ in the above inequality and dividing both sides

by H(c, a), we obtain

1

H(c, a)
λn

[∫ c

a

{
H(s, a)k(s)sα−1ρ(s)B(s)− 1

4

h21(s,a)A(s)ρ(s)

H(s,a)k(s)sα−1

}
ds

]
≤−λ1 [k(c)W (c)] . (7)

Now we claim that detX(t), where x(t) is any prepared solution of (1), has

atleast one zero in (a, b). Assume to the contrary. Adding (6) and (7), we have

an inequality which contradicts the assumption (2). Thus, conclusion holds. Pick

up a sequence {Ti} ⊂ [t0,∞) such that Ti →∞ as i→∞. By the assumptions of

Theorem 3.1, for each i ∈ N, there exist ai, bi, ci ∈ R such that Ti ≤ ai < bi < ci,

and (2) holds with a, b, c replaced by ai, bi, ci, respectively. From the above claim,

the determinant of every prepared solution X(t) has at least one zero ti ∈ (ai, bi).

Noting that ti > ai > Ti, i ∈ N, we see that detX(t) has arbitrarily large zeros.

Thus the system (1) is oscillatory. The proof is complete. �

Under a modification of the hypotheses of Theorem 3.1, we can obtain the

following result.

Corollary 3.0.1. Under the assumptions of Theorem 3.1 with the condition (2)

replaced by

1

H(c, a)

∫ c

a

H(s, a)k(s)sα−1ρ(s)trB(s)ds+
1

H(b, c)

∫ b

c

H(b, s)k(s)sα−1ρ(s)trB(s)ds

>
1

4

[
1

H(c, a)

∫ c

a

h21(s, a)trA(s)ρ(s)

H(s, a)k(s)sα−1
ds+

1

H(b, c)

∫ b

c

h22(b, s)trA(s)ρ(s)

H(b, s)k(s)sα−1
ds

]
, (8)

the system (1) is oscillatory.

This proof is similar to that of Theorem 3.1.
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Theorem 3.2. Let the assumptions of Theorem 3.1 with (2) replaced by

lim sup
t→∞

λn

[∫ t

l

{
H(s, l)k(s)sα−1ρ(s)B(s)− 1

4

h21(s, l)A(s)ρ(s)

H(s, l)k(s)sα−1

}
ds

]
> 0 and (9)

lim sup
t→∞

λ1

[∫ t

l

{
H(t, s)k(s)sα−1ρ(s)B(s)− 1

4

h22(t, s)A(s)ρ(s)

H(t, s)k(s)sα−1

}
ds

]
> 0 (10)

for each l ≥ t0. Then the system (1) is oscillatory.

Corollary 3.0.2. Let the assumptions of Theorem 3.1 with the condition including

(2) replaced by

lim sup
t→∞

∫ t

l

{
H(s, l)k(s)sα−1ρ(s)trB(s)− 1

4

h21(s, l)trA(s)ρ(s)

H(s, l)k(s)sα−1

}
ds > 0 and

lim sup
t→∞

∫ t

l

{
H(t, s)k(s)sα−1ρ(s)trB(s)− 1

4

h22(t, s)trA(s)ρ(s)

H(t, s)k(s)sα−1

}
ds > 0

for each l ≥ t0, the system (1) is oscillatory.

If in Theorem 3.1 and Theorem 3.2, Corollary 3.1 and Corollary 3.2, h1(t, s)

and h2(t, s) replaced by h1(t, s)
√
H(t, s)k(s)sα−1 and h2(t, s)

√
H(t, s)k(s)sα−1

respectively, we can obtain the following results. The proofs are similar.

Theorem 3.3. Assume H ∈ C(D,R) satisfy the condition (H1) in Theorem 3.1.

Suppose that there exist h1, h2 ∈ C(D0,R) and k, ρ ∈ Cα ([t0,∞), (0,∞)) such that

(H2)
∂(H(t, s)k(t))

∂t
−
(
r(t)tα−1 − ρ′(t)

ρ(t)

)
H(t, s)k(t) = h1(t, s)

√
H(t, s)k(t)tα−1

for all (t, s) ∈ D0;

(H3)
∂(H(t, s)k(s))

∂s
−
(
r(s)sα−1 − ρ′(s)

ρ(s)

)
H(t, s)k(s)=−h2(t, s)

√
H(t, s)k(s)sα−1

for all (t, s) ∈ D0.

Assume also that for each sufficiently large T0 ≥ t0, there exist a, b, c ∈ R with

T0 ≤ a < c < b such that

1

H(c, a)
λn

[∫ c

a

{
H(s, a)k(s)sα−1ρ(s)B(s)− 1

4
h21(s, a)A(s)ρ(s)

}
ds

]
+

1

H(b, c)
λ1

[∫ b

c

{
H(b, s)k(s)sα−1ρ(s)B(s)− 1

4
h22(b, s)A(s)ρ(s)

}
ds

]
> 0. (11)

Then the system (1) is oscillatory.
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Corollary 3.0.3. Let the assumptions of Theorem 3.3 with the condition (11)

replaced by

1

H(c, a)

∫ c

a

H(s, a)k(s)sα−1ρ(s)trB(s)ds

+
1

H(b, c)

∫ b

c

H(b, s)k(s)sα−1ρ(s)trB(s)ds

>
1

4

[
1

H(c, a)

∫ c

a

h21(s, a)trA(s)ρ(s)ds+
1

H(b, c)

∫ b

c

h22(b, s)trA(s)ρ(s)ds

]
, (12)

the system (1) is oscillatory.

Theorem 3.4. Under the assumptions of Theorem 3.3 with the condition (11)

replaced by

lim sup
t→∞

λn

[∫ t

l

{
H(s, l)k(s)sα−1ρ(s)B(s)− 1

4
h21(s, l)A(s)ρ(s)

}
ds

]
> 0 and

(13)

lim sup
t→∞

λ1

[∫ t

l

{
H(t, s)k(s)sα−1ρ(s)B(s)− 1

4
h22(t, s)A(s)ρ(s)

}
ds

]
> 0 (14)

for each l ≥ t0. Then the system (1) is oscillatory.

Corollary 3.0.4. Let the assumptions of Theorem 3.3 with the condition including

(11) replaced by

lim sup
t→∞

∫ t

l

{
H(s, l)k(s)sα−1ρ(s)trB(s)− 1

4
h21(s, l)trA(s)ρ(s)

}
ds > 0 and

lim sup
t→∞

∫ t

l

{
H(t, s)k(s)sα−1ρ(s)trB(s)− 1

4
h22(t, s)trA(s)ρ(s)

}
ds > 0

for each l ≥ t0, the system (1) is oscillatory.

4. Conclusion

In this paper, we have established some oscillation results for α- fractional

matrix differential system using Riccati transformation and averaging technique.

Our results are essentially new, have improved and generalized some of the results.
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