
 MATHEMATICA

The Numbers of Lakh Place of Mersenne Primes

${ }^{1}$ M.Antony Arockiasamy and ${ }^{2}$ R.Srinath
Received on 09 January 2018, Accepted on 19 April 2018

Abstract. The numbers $M_{n}=2^{n}-1, n>1$ are called Mersenne numbers. A Mersenne number which is also a prime is called Mersenne prime. In this paper, the numbers of lakh place of Mersenne primes $M_{p}=2^{p}-1$, where $p=8 r+1,8 r+3,8 r+5,8 r+7$ for $r=1,2, \ldots 50(\bmod 131069)$ are studied, and the conclusion is presented by Chinese Remainder theorem.

1. Introduction

The numbers $M_{n}=2^{n}-1, n>1$ are called Mersenne numbers. A Mersenne number which is also a prime is called Mersenne prime. Mersenne primes have arised naturally from the discussions of perfect number. Infact there is a one-to-one correspondence between the Mersenne primes and even perfect numbers. Evidently $3=2^{2}-1,7=2^{3}-1,15=2^{4}-1,31=2^{5}-1,63=2^{6}-1,127=2^{7}-1$ are first few Mersenne numbers, out of which 3, 7, 32 and 127 are primes. Mersenne asserted that for $p=2,3,5,7,13,17,19,31,67,127$ and $257, M_{p}$ is prime and composite for all other primes below 257. Since then it has been shown that M_{67} and M_{257} are composite. [2]
Furthermore, M_{61}, M_{89} and M_{107} are primes which were excluded in his list. Till today in all 32 Mersenne primes that are known, the last and the largest such prime is discovered by British scientist in 1992 on a Honey-well computer. Also it is still not decided, if Mersenne primes are finite or infinite. [3]

[^0]
J.Comp.Matha. Vol.02(01),(2018), 3342 M.Antony Arockiasamy et al. 34

The obvious problem is to recognize if a Mersenne number is prime and if not, to determine the factors. For this various methods are available. A few results concerning these methods are given.

If $p>2$, then any prime divisor of M_{p} must be of the form $2 k p+1$ with $k=1,2,3, \ldots$ the best method presently known for testing the primality of Mersenne numbers is the Lucas-Lehmer Primality test [4]. Specifically, it can be shown that for prime $p>2, M_{p}=2^{p}-1$ is prime if and only if M divides $S_{(k-2)}$, where $S=4$ and $S=S(S-1)-2$ for $k>0$. The test was originally developed by E. Lucas in 1856, and subsequently improved by Lucas in 1878 and D. Lehmer in the 1930. For $p>2$, every prime divisor of M_{p} is of the form $8 k \pm 1$ [5]. In this paper the numbers of lakh place of Mersenne primes $M_{p}=2^{p}-1$ where $p=8 k+1,8 k+3,8 k+5,8 k+7$ for $k=1,2,50(\bmod 131069)$ are studied and presented in theorem 2.2. We quote the theorem 2.1 [1] which is already proved by the same authors.

2. Main Results

In order to show the results on Mersenne primes, the following Chinese Remainder theorem is used.

Let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise co-prime positive integers then system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod n_{1}\right) \\
& x \equiv a_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
& x \equiv a_{k}\left(\bmod n_{k}\right)
\end{aligned}
$$

has one, and only one, solution in $Z_{n_{1}, \ldots, n_{k}}$.
Theorem 2.1. If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=1,8,10,26,46(\bmod 8189) \\
p=8 k+3, k=1,9,21,24,25,39,41(\bmod 8189) \\
p=8 k+5, k=1,12,24,31(\bmod 8189) \\
p=8 k+7, k=13,15,29,32(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 0; If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=6,28,37,38,48(\bmod 8189) \\
p=8 k+3, k=3,8,26,27,32,43(\bmod 8189) \\
p=8 k+5, k=23,45,48(\bmod 8189) \\
p=8 k+7, k=22,27,31,33,41(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 1 ; If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=9,16,24,31,41(\bmod 8189) \\
p=8 k+3, k=2,5,7,46(\bmod 8189) \\
p=8 k+5, k=15,30,41,46(\bmod 8189) \\
p=8 k+7, k=4,30,36,38,42(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 2; If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=2,4,14,30,44(\bmod 8189) \\
p=8 k+3, k=4,20(\bmod 8189) \\
p=8 k+5, k=9,14,42,49(\bmod 8189) \\
p=8 k+7, k=1,12,21(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 3;
If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=22,27,33(\bmod 8189) \\
p=8 k+3, k=10,11,15,18,44,48,50(\bmod 8189) \\
p=8 k+5, k=6,8,13,17,25,35,38(\bmod 8189) \\
p=8 k+7, k=5,24,34,47,49,50(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 4;

If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=3,5,7,11,17,18,36(\bmod 8189) \\
p=8 k+3, k=14,17,30,42,49(\bmod 8189) \\
p=8 k+5, k=4,21,33,34,36(\bmod 8189) \\
p=8 k+7, k=9,23(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 5;
If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=13,19,23,45,47(\bmod 8189) \\
p=8 k+3, k=34,36,38(\bmod 8189) \\
p=8 k+5, k=16,18,19,26,29,39,40(\bmod 8189) \\
p=8 k+7, k=6,14,16,25,35,39,44,48(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 6;
If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=32,40(\bmod 8189) \\
p=8 k+3, k=23,35,45(\bmod 8189) \\
p=8 k+5, k=3,20,27,28,32,43(\bmod 8189) \\
p=8 k+7, k=7,11,19,37,40,45(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 7;
If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=15,20,34,42,49,50(\bmod 8189) \\
p=8 k+3, k=6,13,16,19,29,33(\bmod 8189) \\
p=8 k+5, k=5,44,47,50(\bmod 8189) \\
p=8 k+7, k=2,3,10,17,18,26,46(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 8;
If the power p of M_{p} fulfils the conditions

$$
\left\{\begin{array}{l}
p=8 k+1, k=12,21,25,29,35,39,43(\bmod 8189) \\
p=8 k+3, k=12,22,28,31,37,40,47(\bmod 8189) \\
p=8 k+5, k=2,7,10,11,22,37(\bmod 8189) \\
p=8 k+7, k=8,20,28(\bmod 8189)
\end{array}\right.
$$

then, the digit of ten thousand place of Mersenne primes is 9. [1]

Theorem 2.2. If the power p of M_{p} fulfiles the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=1,8,20,21,24,36,49(\bmod 131069) \\
p=8 r+3, r=1,5,17,21,23(\bmod 131069) \\
p=8 r+5, r=1,2,14,15,21,34,36(\bmod 131069) \\
p=8 r+7, r=1,16(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 0 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=2,47(\bmod 131069) \\
p=8 r+3, r=24,32,41(\bmod 131069) \\
p=8 r+5, r=13(\bmod 131069) \\
p=8 r+7, r=14,15,27,37,43,47,50(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 1 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=5,7,23,30,32(\bmod 131069) \\
p=8 r+3, r=3,11,13,26,36,39(\bmod 131069) \\
p=8 r+5, r=5,17,22,27,31,42,43(\bmod 131069) \\
p=8 r+7, r=19,21,23,34,36,46,48(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 2 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=6,26,31,39(\bmod 131069) \\
p=8 r+3, r=20,29,31,49(\bmod 131069) \\
p=8 r+5, r=18,20,23,33,46(\bmod 131069) \\
p=8 r+7, r=2,5,9,10,29,30(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 3 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=9,10,14,16,28,44(\bmod 131069) \\
p=8 r+3, r=7,8,25,40,45,48(\bmod 131069) \\
p=8 r+5, r=12,24,32,38,41,49(\bmod 131069) \\
p=8 r+7, r=3,18,26,33,39(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 4 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=3,11,13,29,41(\bmod 131069) \\
p=8 r+3, r=2,33,42(\bmod 131069) \\
p=8 r+5, r=10,19,29(\bmod 131069) \\
p=8 r+7, r=20,25(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 5;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=15,25,33,34,48(\bmod 131069) \\
p=8 r+3, r=6,10,12,16,37,47(\bmod 131069) \\
p=8 r+5, r=7,8,25(\bmod 131069) \\
p=8 r+7, r=8,12,13,24,45(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 6 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=38,43,46(\bmod 131069) \\
p=8 r+3, r=4,9,14,15,34,44(\bmod 131069) \\
p=8 r+5, r=6,16,37,47,50(\bmod 131069) \\
p=8 r+7, r=7,35,41,49(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 7;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=4,7,40,42,45(\bmod 131069) \\
p=8 r+3, r=18,19,22,27,38,43,46(\bmod 131069) \\
p=8 r+5, r=3,9,26,30,39,48(\bmod 131069) \\
p=8 r+7, r=4,22,28,31,38,40(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 8 ;
If the power p of M_{p} fulfills the conditions

$$
\left\{\begin{array}{l}
p=8 r+1, r=12,18,19,22,27,35,37,50(\bmod 131069) \\
p=8 r+3, r=28,30,35,50(\bmod 131069) \\
p=8 r+5, r=4,11,28,35,40,44,45(\bmod 131069) \\
p=8 r+7, r=6,11,17,32,42,44(\bmod 131069)
\end{array}\right.
$$

then, the number of lakh digit of Mersenne prime is 9 .
Proof. Since the power p of M_{P} is a prime, then $p=4 r+1$ or $p=4 r+3$. when $p=2,3,5,2^{p}-1<100$. So, $p=8 r+1$ or $p=8 r+3$ or $p=8 r+5$ or $p=8 r+7$. We have the congruences equations as following, when M_{p} modulo 64,15625 separately

$$
\left.\begin{array}{l}
M_{p}=2^{8 r+1}-1=256^{k} \times 2-1 \equiv-1(\bmod 64) \\
M_{p}=2^{8 r+3}-1=256^{k} \times 2^{3}-1 \equiv-1(\bmod 64) \\
M_{p}=2^{8 r+5}-1=256^{k} \times 2^{5}-1 \equiv-1(\bmod 64) \\
M_{p}=2^{8 r+7}-1=256^{k} \times 2^{7}-1 \equiv-1(\bmod 64)
\end{array}\right\}
$$

We have to solve congruence equations (1) and (2) to (5) as following, when $r \equiv r_{i}(\bmod 131069)$ and $r_{i}=0,1, \ldots 50$.

$$
\begin{align*}
256^{r}= & 1,256,3036,11591,14171,2776,7531,6061,4741,10571,3051,15431, \\
& 12836,4766,1346,826,8331,7736,11666,2121,11726,1856,6386, \\
& 9816,12896,4501,11631,8786,14841,2421,10401,6406,14936, \\
& 11116,1946,13801,1806,9211,14266,11471,14701,13456,7236, \\
& 8666,15371,13101,10106,9011,9941,13646,9001(\bmod 15625) . \tag{6}
\end{align*}
$$

Combined congruence Equations(6) and (2), (3), (4), (5) separately, we have

$$
\begin{align*}
M_{p}=2^{8 r+1}-1= & 1,511,6071,7556,12716,5551,15061,12121,9481,5516, \\
& 6101,15236,10046,9531,2691,1651,1036,15471,7706,4241, \\
& 7826,3711,12771,4006,10166,9001,7636,1946,14056,4841, \\
& 5176,12811,14246,6606,3891,11976,3611,2796,12906, \\
& 731613776,11286,14471,1706,15116,10576,4586,2396,4256, \\
& 11666,2376(\bmod 15625) . \tag{7}
\end{align*}
$$

$$
\begin{align*}
M_{p}= & 2^{8 r+3}-1=7,2047,8662,14602,3992,6582,13372,1612,6677,6442, \\
& 8782,14072,8937,6877,10767,6607,4147,15012,15202,1342,47,14847, \\
& 4212,402,9417,4757,14922,7787,9352,3742,5082,4372,10112,10802, \\
& 15567,1032,14447,11187,4752,13642,8232,13897,11012,6827,13592, \\
& 11057,2722,9587,1402,15417,9507,(\bmod 15625) . \tag{8}
\end{align*}
$$

$$
\begin{align*}
M_{p}=2^{8 r+5}-1= & 31,8191,3401,11536,346,10706,6616,6451,11807,10146,3881, \\
& 9416,4501,11886,11821,10806,966,13176,13396,5371,231,12516, \\
& 1226,1611,6421,3406,12816,15526,6161,14971,4706,1866,9201, \\
& 11961,15396,10916,13501,3386,7696,325,1681,8716,12801,11686, \\
& 7496,12984,10891,7101,5611,14796,6781(\bmod 15625) . \tag{9}
\end{align*}
$$

$$
\begin{align*}
M_{p}=2^{8 r+7}-1= & 127,1517,13607,14897,1387,11577,10842,10182,13097,9337, \\
& 15527,6417,2382,672,412,11977,3867,5832,8872,5862,927, \\
& 3192,4907,6447,10062,13627,4392,15232,9022,13012,3202, \\
& 7467,5557,972,14712,902,12417,7132,13547,15162,6727, \\
& 3617,4332,15497,14362,5052,12317,12782,6822, \\
& 12312,11502(\bmod 15625) . \tag{10}
\end{align*}
$$

Combined congruence Equations (1) and (7), (8), (9), (10) separately , by using the Chinese Remainder theorem, conclusions as follows.

$$
\begin{align*}
M_{p}=2^{8 r+1}-1= & 511,131071,554431,934591,255551,421311,855871,103231, \\
& 427391,412351,562111,900671,572031,440191,689151,422911, \\
& 265471,960831,972991,859510,3711,950271,269631,25791, \\
& 602751,304511,955071,498431,598591,239551,325311,279871, \\
& 647231,691391,996351,66311,924671,716031,304191,873151, \\
& 526911,889471,704831,436991,869951,707711,174271,613631, \\
& 89791,986751(\bmod 1000000) . \tag{11}
\end{align*}
$$

$$
\begin{align*}
M_{p}=2^{8 r+3}-1= & 2047,524287,217727,738367,22207,685247,423487,412927, \\
& 709567,649407,248447,602687,288127,760767,756607, \\
& 691647,61887,843327,891967,343807,14847,801087,78527, \\
& 103167,411007,218047,820287,993727,394367,958207, \\
& 301247,119487,588927,765567,985407,264447,698687, \\
& 864127,216767,492607,107647,557887,819327,747967,479807, \\
& 830847,697087,454527,359167,947007(\bmod 1000000) . \tag{12}
\end{align*}
$$

J.Comp.Matha. Vol.02(01),(2018), 33/42 M.Antony Arockiasamy et al. 42

$$
\begin{align*}
M_{p}=2^{8 r+5}-1= & 8191,97152,870911,953471,88831,740991,693951,651711, \\
& 838271,597631,993791,410751,152511,43071,26431,766591, \\
& 247551,373311,567871,375231,59391,204351,314111,412671, \\
& 644031,872191,281151,974911,577471,832831,204991,477951, \\
& 355711,622271,941631,57791,794751,456511,867071,970431, \\
& 430591,231551,277311,991871,919231,323391,788351,818111, \\
& 436671,788031(\bmod 1000000) . \tag{13}
\end{align*}
$$

$M_{p}=2^{8 r+7}-1=32767,388607,483647,813887,355327,963967,775807,606847$, 353087, 390527, 975167, 643007, 610047, 172287, 105727, 66367, 990207, 493247, 271487, 500927, 237567, 817407, 256447, 650687, 576127, 488767, 124607, 899647, 309887, 331327, 819967, 911807, 422847, 249087, 766527, 231167, 179007, 826047, 468287, 881727, 722367, 926207, 109247, 967487, 676927, 293567, 153407, 272447, 746687, 152127(mod 1000000).
this complete the proof.

References

[1] M.Antony Arockiasamy, R.Srinath, National Conference On Mathematical Sciences and Its Applications, 2018, pp 371-375,
[2] S.B. Malik, Basic Number Theory, Vikas Publishing Company, New Delhi, 1995, pp-151-154.
[3] K. H. Rosen, Elementary Number Theory and its applications, Addison-Wesley publishing company, 2005, pp.181-185.
[4] S.B. Zhang, X.C. Ma and L.H. Zhou, Some Notes On the Distribution of Mersenne Primes, applies mathematics Vol.1, No.4, 2010, pp 312-315.
[5] S. Zhang, and L. Zhou, The Number of Thousand Place of Mersenne Primes, Vol.1, No. 2, 2011, pp1359-1363.

[^0]: ${ }^{1}$ Corresponding Author: E-mail: arcokiaanto2008@gmail.com, ${ }^{2}$ srinath281093@gmail.com
 ${ }^{1,2} \mathrm{PG}$ and Research Department of Mathematics, Sacred Heart College, Tirupattur, Vellore District - 635 601, Tamil Nadu, S.India.

