

The Eccentric-Distance Sum of Cycles and Related Graphs

${ }^{1} \mathrm{~F}$. Sujitha and ${ }^{2}$ E. Surya Armstrong

Received on 5 January 2019, Accepted on 22 February 2019

Abstract

Let $G=(V, E)$ be a simple connected graph. The eccentric-distance sum of G is defined as $\xi^{d s}(G)=\sum_{u \in V(G)} e(u) D(u)$ where $e(u)$ is the eccentricity of the vertex u in G and $D(u)$ is the sum of distances between u and all other vertices of G. In this paper, we establish formulae to calculate the eccentric-distance sum for some cycle related graphs, namely C_{n}, complement of C_{n}, shadow of C_{n} and the line graph of C_{n}. Also, it is shown that, the eccentric-distance sum of C_{n} is less than the eccentric-distance sum of shadow of C_{n} for all $n \geq 3$.

Key words: Distance, Eccentricity, Eccentric-Distance Sum.
Mathematics Subject classification 2010: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and p respectively. For basic definitions and terminologies we refer to [1]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G$ or $r(G)$ and the maximum eccentricity is its diameter, $\operatorname{diam} G$ of G. A $u-v$ walk of G is a finite, alternating sequence $u=u_{0} e_{1} u_{1} e_{2} \cdots, e_{n} u_{n}=v$ of vertices and edges in G beginning with vertex u and ending with vertex v such that

[^0]$e_{i}=u_{i-1} u_{i}, i=1,2, \cdots, n$. The number n is called the length of the walk. A walk in which all the vertices are distinct is called a path. A closed walk $u_{0}, u_{1}, u_{2}, \cdots, u_{n}$ in which $n \geq 3$ and $u_{0}, u_{1}, u_{2}, \cdots, u_{n-1}$ are distinct is called a cycle of length n and is denoted by C_{n}. The complement \bar{G} of a simple graph G is a simple graph with vertex set V, two vertices being adjacent in \bar{G} if and only if they are not adjacent in G. The line graph $L(G)$ is a graph in which the vertices are the lines of G and two points in $L(G)$ are adjacent if and only if the corresponding lines are adjacent in G. The shadow graph $S(G)$ of a connected graph G is constructed by taking two copies of G say G^{\prime} and $G^{\prime \prime}$. Join each vertex u^{\prime} in G^{\prime} to the neighbours of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$. The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G(V, E)$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$. The sum $G_{1}+G_{2}$ is the graph $G_{1} \cup G_{2}$ together with all the lines joining points of V_{1} to the points of V_{2}. In [2], Gupta, Singh and Madan introduced a novel topological descriptor which is called eccentric-distance sum index (EDS) and then the concept was studied by various authors. The eccentric-distance sum of G is defined as $\xi^{d s}(G)=\sum_{u \in V(G)} e(u) D(u)$ where $e(u)$ is the eccentricity of the vertex u in G and $D(u)$ is the sum of distances between u and all other vertices of G. In this paper, we establish formulae to calculate the eccentric-distance sum for some cycle related graphs, namely C_{n}, complement of C_{n}, Shadow of C_{n} and the line graph of C_{n}.
Throughout this paper G denotes a connected graph with at least three vertices.
Observation 1.1. [2] $\xi^{d s}\left(K_{n}\right)=n(n-1)$.
Observation 1.2. $L(G)$ is isomorphic to G if and only if G is a cycle.

2. Main Results

Theorem 2.1. The eccentric distance sum of, the sum of two cycles of length n is $\xi^{d s}\left(C_{n}+C_{n}\right)=2 n \times\lfloor n / 2\rfloor \times\left[n+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]$
Proof. Clearly the graph $C_{n}+C_{n}$ has $2 n$ number of vertices.

$$
e\left(v_{i}\right)=\lfloor n / 2\rfloor \text { where } i=1,2,3, \ldots, 2 n
$$

$$
\begin{aligned}
& D\left(v_{i}\right)=1+1+2+\cdots+\lfloor(n-1) / 2\rfloor+\lfloor n / 2\rfloor+\underbrace{(1+1+\cdots+1)}_{(n \text { times })} \\
&=0+0+1+1+2+\cdots+\lfloor(n-1) / 2\rfloor+\lfloor n / 2\rfloor+n(1) \\
&=[0+0+1+1+2+\cdots+\lfloor(n-1) / 2\rfloor+\lfloor n / 2\rfloor]+n \\
&=\left[\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right]+n \\
& \xi^{d s}\left(C_{n}+C_{n}\right)=\sum_{i=1}^{2 n} e\left(v_{i}\right) D\left(v_{i}\right) \\
&=e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{2 n}\right) D\left(v_{2 n}\right) \\
&=\lfloor n / 2\rfloor\left[\left(\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right)+n\right]+\cdots+\lfloor n / 2\rfloor\left[\left(\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right)+n\right\rfloor(2 n \text { times }) \\
&\left.=2 n\lfloor n / 2\rfloor\left[\left(\sum_{j=1}^{n+1}\lfloor(j-1) / 2)\right\rfloor\right)+n\right]
\end{aligned}
$$

Hence $\left.\xi^{d s}\left(C_{n}+C_{n}\right)=2 n \times\lfloor n / 2\rfloor \times\left[n+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2)\right\rfloor\right)\right]$
Remark 2.2. $\xi^{d s}\left(C_{n}\right)=n \times\lfloor n / 2\rfloor \times\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)$
Proof. The eccentricity of any vertex in $\left(C_{n}+C_{n}\right)$ is same as the eccentricity of any vertex in C_{n}. Also, the distance sum of any vertex in $\left(C_{n}+C_{n}\right)$ is equal to n plus the distance sum of any vertex in C_{n}. Thus $\xi^{d s}\left(C_{n}\right)=n \times\lfloor n / 2\rfloor \times\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)$.

Theorem 2.3. The eccentric distance sum of the sum of two cycles of length n and m where $n \neq m$ is $\xi^{d s}\left(C_{n}+C_{m}\right)=n \times\lfloor n / 2\rfloor \times\left[m+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]+$ $m \times\lfloor m / 2\rfloor \times\left[n+\left(\sum_{i=1}^{m+1}\lfloor(i-1) / 2\rfloor\right)\right]$

Proof. Consider the graph $C_{n}+C_{m}$ where $n \neq m$ Clearly it contains $n+m$ number of vertices.

$$
\begin{aligned}
& e\left(v_{i}\right)=\lfloor n / 2\rfloor \text { for all } i=1,2,3, \ldots, n \\
& e\left(v_{i}\right)=\lfloor m / 2\rfloor \text { for all } i=n+1, \ldots, m \\
& D\left(v_{i}\right)=1+1+2+\cdots+\lfloor(n-1) / 2\rfloor+\lfloor n / 2\rfloor+\underbrace{(1+1+\cdots+1)}_{\begin{array}{c}
m \text { times })
\end{array}} \\
& \quad \text { for all } i=1,2,3, \cdots, n
\end{aligned}
$$

$$
\begin{aligned}
& =0+0+1+1+2+\cdots+\lfloor(n-1) / 2\rfloor+\lfloor n / 2\rfloor+\underbrace{(1+1+\cdots+1)}_{(m \text { times })} \\
& =\left[\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right]+m \quad \text { for all } i=1,2,3, \ldots, n \\
& D\left(v_{i}\right)=1+1+2+\cdots+\lfloor(m-1) / 2\rfloor+\lfloor m / 2\rfloor+\underbrace{(1+1+\cdots+1)}_{(n \text { times })} \\
& \text { for all } i=n+1, \ldots, m \\
& =0+0+1+1+2+\cdots+\lfloor(m-1) / 2\rfloor+\lfloor m / 2\rfloor+\underbrace{(1+1+\cdots+1)}_{(n \text { times })} \\
& =\left[\sum_{j=1}^{m+1}\lfloor(j-1) / 2\rfloor\right]+n \text { for all } i=n+1, \ldots, m \\
& \xi^{d s}\left(C_{n}+C_{m}\right)=\sum_{i=1}^{n+m} e\left(v_{i}\right) D\left(v_{i}\right) \\
& =e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{n}\right) D\left(v_{n}\right)+e\left(v_{n+1}\right) D\left(v_{n+1}\right)+\cdots+e\left(v_{m}\right) D\left(v_{m}\right) \\
& =\lfloor n / 2\rfloor\left[\left(\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right)+m\right]+\cdots+\lfloor n / 2\rfloor\left[\left(\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right)+m\right] \\
& +\lfloor m / 2\rfloor\left[\left(\sum_{j=1}^{m+1}\lfloor(j-1) / 2\rfloor\right)+n\right]+\cdots+\lfloor m / 2\rfloor\left[\left(\sum_{j=1}^{m+1}\lfloor(j-1) / 2\rfloor\right)+n\right] \\
& =n \times\lfloor n / 2\rfloor \times\left[m+\sum_{j=1}^{n+1}\lfloor(j-1) / 2\rfloor\right]+m \times\lfloor m / 2\rfloor \times\left[n+\left(\sum_{i=1}^{m+1}\lfloor(i-1) / 2\rfloor\right)\right]
\end{aligned}
$$

Hence
$\xi^{d s}\left(C_{n}+C_{m}\right)=n \times\lfloor n / 2\rfloor\left[m+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]+m \times\lfloor m / 2\rfloor\left[n+\left(\sum_{i=1}^{m+1}\lfloor(i-1) / 2\rfloor\right)\right]$.

Remark 2.4. $\xi^{d s}\left(C_{n}+C_{m}\right) \neq \xi^{d s}\left(C_{n+m}\right)$.
Proof. By remark 2.2, $\xi^{d s}\left(C_{n+m}\right)=(n+m) \times\lfloor(n+m) / 2\rfloor \times\left(\sum_{i=1}^{n+m+1}\lfloor(i-1) / 2\rfloor\right)$
By theorem 2.3, $\xi^{d s}\left(C_{n}+C_{m}\right)=n \times\lfloor n / 2\rfloor \times\left[m+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]+m \times\lfloor m / 2\rfloor$

$$
\times\left[n+\left(\sum_{i=1}^{m+1}\lfloor(i-1) / 2\rfloor\right)\right]
$$

Hence the result follows.

Theorem 2.5. For $n \geq 5, \xi^{d s}\left(\overline{C_{n}}\right)=2 n(n+1)$.
Proof. $e\left(v_{i}\right)=2$ for all $i=1,2, \cdots, n$

$$
\begin{aligned}
D\left(v_{i}\right) & =n+1 \text { for all } i=1,2, \cdots, n \\
\xi^{d s}\left(\overline{C_{n}}\right) & =\sum_{i=1}^{n} e\left(v_{i}\right) D\left(v_{i}\right) \\
& =e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{n}\right) D\left(v_{n}\right) \\
& =2(n+1)+\cdots+2(n+1)(n \text { times }) \\
& =n \times 2 \times(n+1)=2 n(n+1)
\end{aligned}
$$

Remark 2.6. For $n=3,4,\left(\overline{C_{n}}\right)$ is a disconnected graph and so eccentric distance sum cannot be determined.

Remark 2.7. Eccentric distance sum cannot be determined for $\left(\overline{C_{n}+C_{n}}\right)$.
Proof. $\left(\overline{C_{n}+C_{n}}\right)$ is the union of $\left(\overline{C_{n}}\right)$ and $\left(\overline{C_{n}}\right)$.
That is $\left(\overline{C_{n}+C_{n}}\right)=\left(\overline{C_{n}}\right) \cup\left(\overline{C_{n}}\right)$
$\left(\overline{C_{n}}\right) \cup\left(\overline{C_{n}}\right)$ is a disconnected graph.
Thus the result follows.
Theorem 2.8. For $n \geq 6$, $\xi^{d s}\left(\overline{C_{n}}\right)<\xi^{d s}\left(C_{n}\right)$.
Proof. For $n \geq 6, n+1<\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor$

$$
\left.\begin{array}{l}
\Rightarrow n(n+1)<n \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor \\
\Rightarrow 2 n(n+1)<2 n \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor \\
\end{array}<n\lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]
$$

Thus $\xi^{d s}\left(\overline{C_{n}}\right)<\xi^{d s}\left(C_{n}\right)$ for $n \geq 6$.

Theorem 2.9. If two graphs are isomorphic then their eccentric distance sum is equal.

Proof. Let G_{1} and G_{2} be two graphs which are isomorphic. Then the eccentricity of every vertex in G_{1} and G_{2} will be equal and the distance sum of every vertex in G_{1} and G_{2} will be equal. Hence the eccentric distance sum of the two graphs will be equal.

Result 2.10. $\xi^{d s}\left(C_{n}+C_{n}\right)=\xi^{d s}\left(K_{2 n}\right)$ for $n=3$.
Proof. The graph $C_{3}+C_{3}$ is isomorphic to the complete graph with six vertices K_{6}.Thus $\xi^{d s}\left(C_{3}+C_{3}\right)=\xi^{d s}\left(K_{6}\right)$.

We can prove the same result by giving particular value for $n=3$
We know that $\xi^{d s}\left(C_{n}+C_{n}\right)=2 n \times\lfloor n / 2\rfloor \times\left[n+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]$
$\xi^{d s}\left(C_{3}+C_{3}\right)=2 \times 3 \times\lfloor 3 / 2\rfloor[3+0+0+1+1]=30$
We know that $\xi^{d s}\left(K_{n}\right)=n(n-1)$

$$
\begin{aligned}
\xi^{d s}\left(K_{6}\right) & =6(6-1)=30 \\
\xi^{d s}\left(C_{3}+C_{3}\right) & =\xi^{d s}\left(K_{6}\right)
\end{aligned}
$$

Result 2.11. For $n=5, \xi^{d s}\left(C_{n}\right)=\xi^{d s}\left(\overline{C_{n}}\right)$.
Proof. The cycle graph on 5 vertices, C_{5} is the unique self- complementary graph (up to graph isomorphism)
That is C_{5} is isomorphic to its complement.
Thus $\xi^{d s}\left(C_{5}\right)=\xi^{d s}\left(\overline{C_{5}}\right)$ Also, We can show the same result by giving particular value for $n=5$ in the formula

$$
\begin{aligned}
\xi^{d s}\left(C_{n}\right) & =n \times\lfloor n / 2\rfloor \times\left[\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right] \\
\xi^{d s}\left(C_{5}\right) & =5 \times\lfloor 5 / 2\rfloor \times\left[\sum_{i=1}^{6}\lfloor(i-1) / 2\rfloor\right] \\
& =5 \times 2 \times[0+0+1+1+2+2]=60 \\
\xi^{d s}\left(\overline{C_{n}}\right) & =2 n(n+1)=60 \\
\xi^{d s}\left(C_{5}\right) & =\xi^{d s}\left(\overline{C_{5}}\right) .
\end{aligned}
$$

Theorem 2.12. $\xi^{d s}\left(C_{n}\right)=\xi^{d s}\left(L\left(C_{n}\right)\right)$.
Proof. By observation 1.2, C_{n} is isomorphic to $L\left(C_{n}\right)$. Thus $\xi^{d s}\left(C_{n}\right)=\xi^{d s}\left(L\left(C_{n}\right)\right)$.

Theorem 2.13. For $n=3, \xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]$.
Proof. $e\left(v_{i}\right)=\lceil n / 2\rceil$ for all $i=1,2,3, \cdots, n$

$$
\begin{aligned}
e\left(v_{i}^{\prime}\right) & =\lceil n / 2\rceil \text { for all } i=1,2, \cdots, n \\
D\left(v_{i}\right) & =\left[2 \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]+2 \text { for all } i=1,2,3, \cdots, n \\
& =2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
D\left(v_{i}^{\prime}\right) & =\left[2 \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]+2 \text { for all } i=1,2,3, \cdots, n \\
& =2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]
\end{aligned}
$$

For $n=3$

$$
\begin{aligned}
& \begin{aligned}
\xi^{d s}\left(S\left(C_{n}\right)\right) & =\sum_{u \in V\left(S\left(C_{n}\right)\right)} e(u) D(u) \\
& =e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{n}\right) D\left(v_{n}\right)+e\left(v_{1}^{\prime}\right) D\left(v_{1}^{\prime}\right)+\cdots+e\left(v_{n}^{\prime}\right) D\left(v_{n}^{\prime}\right)
\end{aligned} \\
& \quad= \\
& \lceil n / 2\rceil \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]+\cdots+\lceil n / 2\rceil \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right. \\
& +1]+\lceil n / 2\rceil \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]+\cdots+\lceil n / 2\rceil \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
& \quad=2 n\left[\lceil n / 2\rceil \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]\right] \\
& \quad=4 n\left[\lceil n / 2\rceil\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]\right]
\end{aligned}
$$

Hence $\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]$.
Theorem 2.14. For $n \geq 4$, $\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n \times\lfloor n / 2\rfloor \times\left[1+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]$.
Proof. Clearly $S\left(C_{n}\right)$ has $2 n$ number of vertices

$$
e\left(v_{i}\right)=\lfloor n / 2\rfloor \text { for all } i=1,2,3, \cdots, n
$$

$$
\begin{aligned}
e\left(v_{i}^{\prime}\right) & =\lfloor n / 2\rfloor \text { for all } i=1,2, \cdots, n \\
D\left(v_{i}\right) & =\left[2\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]+2 \text { for all } i=1,2,3, \cdots, n \\
& =2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
D\left(v_{i}^{\prime}\right) & =\left[2\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]+2 \text { for all } i=1,2,3, \cdots, n \\
& =2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
\xi^{d s}\left(S\left(C_{n}\right)\right) & =\sum_{u \in V\left(S\left(C_{n}\right)\right)} e(u) D(u) \\
& =e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{n}\right) D\left(v_{n}\right)+e\left(v_{1}^{\prime}\right) D\left(v_{1}^{\prime}\right)+\cdots+e\left(v_{n}^{\prime}\right) D\left(v_{n}^{\prime}\right) \\
& =\lfloor n / 2\rfloor \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]+\cdots+\lfloor n / 2\rfloor \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right. \\
+1]+\lfloor n / 2\rfloor & \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]+\cdots+\lfloor n / 2\rfloor \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
& =2 n\left[\lfloor n / 2\rfloor \times 2\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]\right] \\
& =4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]
\end{aligned}
$$

Hence $\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n \times\lfloor n / 2\rfloor \times\left[1+\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)\right]$.
Theorem 2.15. $\xi^{d s}\left(C_{n}\right)<\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n \geq 3$.

Proof. First we prove for $n \geq 4$.

$$
\begin{aligned}
& \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor \\
& \lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<\lfloor n / 2\rfloor\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right] \\
& n\lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<n\lfloor n / 2\rfloor\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor \\
& <4 n\lfloor n / 2\rfloor\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { i.e. } n\lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<4 n\lfloor n / 2\rfloor\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right] \\
\Rightarrow \xi^{d s}\left(C_{n}\right)<\xi^{d s}\left(S\left(C_{n}\right)\right) \text { for } n \geq 4
\end{gathered}
$$

For $n=3$

$$
\begin{aligned}
& \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor \\
& \lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<\lfloor n / 2\rfloor\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor \\
& \leq\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right] \quad \text { (since }\lfloor n / 2\rfloor \leq\lceil n / 2\rceil \text {) } \\
& \lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor \\
& n\lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<n\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor \\
& <4 n\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor \\
& n\lfloor n / 2\rfloor \sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor<4 n\lceil n / 2\rceil\left[1+\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right\rfloor
\end{aligned}
$$

Thus $\xi^{d s}\left(C_{n}\right)<\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n \geq 3$.

Theorem 2.16. $\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=8 n(n+2)$ for $n \geq 5$.

Proof. $S\left(\overline{C_{n}}\right)$ has $2 n$ vertices

$$
\begin{aligned}
& e\left(v_{i}\right)=2 \text { for all } i=1,2,3, \cdots, n \\
& e\left(v_{i}^{\prime}\right)=2 \text { for all } i=1,2, \cdots, n \\
& D\left(v_{i}\right)=2(n+2) \text { for all } i=1,2,3, \cdots, n \\
& D\left(v_{i}^{\prime}\right)=2(n+2) \text { for all } i=1,2,3, \cdots, n
\end{aligned}
$$

$$
\begin{aligned}
\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right) & =\sum_{u \in V\left(S\left(\overline{C_{n}}\right)\right)} e(u) D(u) \\
& =e\left(v_{1}\right) D\left(v_{1}\right)+\cdots+e\left(v_{n}\right) D\left(v_{n}\right)+e\left(v_{1}^{\prime}\right) D\left(v_{1}^{\prime}\right)+\cdots+e\left(v_{n}^{\prime}\right) D\left(v_{n}^{\prime}\right) \\
& =2[2(n+2)]+\cdots+2[2(n+2)]+2[2(n+2)]+\cdots+2[2(n+2)] \\
& =2 n[2 \times(2(n+2))] \\
& =8 n(n+2)
\end{aligned}
$$

Result 2.17. $\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n=5$.
Proof. Since C_{n} is isomorphic to its complement, the result follows.
Aliter:

$$
\begin{align*}
\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right) & =8 n(n+2) \\
\xi^{d s}\left(S\left(\overline{C_{5}}\right)\right) & =8 \times 5(5+2) \\
& =280 \tag{1}\\
\xi^{d s}\left(S\left(C_{n}\right)\right) & =4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
\xi^{d s}\left(S\left(C_{5}\right)\right) & =4 \times 5 \times\lfloor 5 / 2\rfloor\left[\left(\sum_{i=1}^{6}\lfloor(i-1) / 2\rfloor\right)+1\right] \\
& =4 \times 5 \times 2[0+0+1+1+2+2+1] \\
& =280 \tag{2}
\end{align*}
$$

From (1) and (2)
$\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n=5$

Result 2.18. $\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)<\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n \geq 6$
Proof. We find the values of $\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)$ and $\xi^{d s}\left(S\left(C_{n}\right)\right)$ as follows:
When $n=6, \quad \xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=8 n(n+2)=384$

$$
\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]=720
$$

When $n=7, \quad \xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=8 n(n+2)=504$

$$
\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]=1092
$$

When $n=8, \quad \xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=8 n(n+2)=640$

$$
\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]=2176
$$

When $n=9, \quad \xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)=8 n(n+2)=792$

$$
\xi^{d s}\left(S\left(C_{n}\right)\right)=4 n\lfloor n / 2\rfloor\left[\left(\sum_{i=1}^{n+1}\lfloor(i-1) / 2\rfloor\right)+1\right]=3024
$$

Thus we see that $\xi^{d s}\left(S\left(\overline{C_{n}}\right)\right)<\xi^{d s}\left(S\left(C_{n}\right)\right)$ for $n \geq 6$

3. Conclusion

In this paper we have found the eccentric distance sum of, the sum of two cycles of length n, the eccentric distance sum of a cycle, the eccentric distance sum of complement of a cycle, the eccentric distance sum of the line graph of a cycle , the eccentric distance sum of the shadow graph of a cycle and we conclude that the eccentric distance sum of the complement of a cycle is less than the eccentric distance sum of a cycle for $n \geq 6$, the eccentric distance sum of a cycle is less than the eccentric distance sum of the shadow of a cycle for $n \geq 3$ and the eccentric distance sum of the shadow of complement of a cycle is less than the eccentric distance sum of the shadow of a cycle for $n \geq 6$.

References

[1] Gary Chartrand,Ping Zhang,Introduction to Graph Theory,Tata McGraw-Hill Publications, edition 2006.
[2] S. Gupta, M. Singh and A.K. Madan, Eccentric-distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386401.

[^0]: ${ }^{1}$ Corresponding Author: E-mail: sujivenkit@gmail.com, ${ }^{2}$ suryaarmstrong2579@gmail.com
 ${ }^{1,2}$ Department of Mathematics Holy Cross College(Autonomous) Nagercoil, Tamil Nadu, India.

